

Algebra 2 Prep Summer Enrichment Activity

IMPORTANT INSTRUCTIONS FOR STUDENTS!!!

We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing the packet and getting assistance!

- Students should try to answer all the questions if possible; you <u>must</u> show all work.
- Use the examples provided for assistance.

Now! Get Ready, Get Set, and Do Your Best!

Solving Equations

Example: Solve the equation.						
-4b = 28	Problem					
$\frac{-4b}{-4} = \frac{28}{-4}$	Divide both sides by -4					
b = -7	Answer	Check:	-4b = 28			
			-4(-7) = 28	Substitute -7 for b into the equation		
			28 = 28	correct		

Example: Solve the equation.

$4\mathbf{x} - 6 = 2\mathbf{x} + 12$	Problem
$4\mathbf{x} - 6 = 2\mathbf{x} + 12$	Subtract 2x from both sides
$\begin{vmatrix} \frac{-2x & -2x}{2x - 6} = 12 \\ + 6 & + 6 \end{vmatrix}$	add 6 to both sides of the equation
$\frac{1}{2} \frac{2x}{2} = \frac{18}{2}$	divide by 2 on both sides
x = 9 Answer	Check: $4x - 6 = 2x + 12$
	4(9) - 6 = 2(9) + 12 Substitute 9 for x into the equation
	30 = 30 correct

Example: Solve the equation	n.				
2(4c+8) = 3(2c+6)	Problem				
8c + 16 = 6c + 18 <u>-6c</u> -6c.		ibutive property to multiply from both sides of the equation	1.		
2c + 16 = 18 -16 -16 .	Simplify. Subtract 16 from both sides of the equation.				
$\frac{2c}{2} = \frac{2}{2}$	Divide by 2	on both sides of the equation.			
c = 1	Answer				
		Check:			
		2(4c+8) = 3(2c+6)	Original Equation		
		2[4(1)+8] = 3[2(1)+6]	Substitute 1 for c into the equation		
		2(12) = 3(8)			
		24 = 24	Correct		

Exercises: Solve each equation. Then check your solution. 1. 18 = x - 4 2. -12 = c + 9

1. 18 = x - 42. -12 = c + 93. x = -84

4.
$$\frac{1}{3}$$
 n = 7 5. $5d = -60$ 6. $\frac{-1}{2}x = 12$

7.
$$-7n = 56$$

8. $8 - x = 4x + 28$
9. $7y - 3y = 2y + 6$

10.
$$4x + 3 = 7x + 2$$

11. $5n - 7 = 4n + 9$
12. $5.2x - 8.3 = 13.3 - 2x$

13.
$$4.4s + 6.2 = 8.8s - 1.8$$
 14. $-2(x + 4) = 2(x - 5)$ 15. $5(2 + 4y) = 50$

16. 4(y+1) - 2 = 4y + 2

Describe Number Patterns

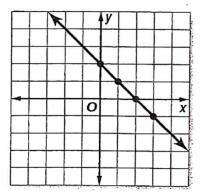
Write Equations: Sometimes a pattern can lead to a general rule that can be written as an equation. *Example*: Suppose you purchase some roses. You could make a chart to show the relationship between the number of roses and the cost. There will also be a delivery fee.

The following table shows the relationship of number of roses purchased and the cost.

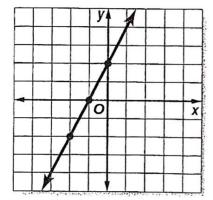
Number of roses	1	2	3	4	5
Cost	17	29	41	53	65

The difference in the x values is 1, and the difference in the y values is 12. This pattern shows that y is always twelve times x plus 5. If you take the point (5, 65), to figure out the constant. You can take the x-value, 5 and multiply it by 12 which equals 60. You still need to add 5 to get the 65. This suggests the relation y = 12x + 5. Since the relation is also a function, we can write the equation in functional notation as f(x) = 12x + 5.

Exercises:


17. Write an equation for the function in functional notation. Then complete the table.

х	-2	-1	0	1	2	3
У	-2	1	4			

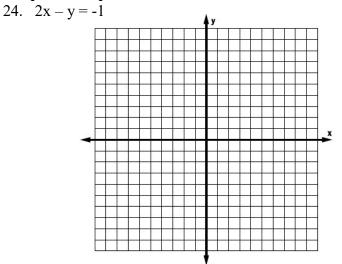

18. Write an equation for the function in functional notation. Then complete the table.

ſ	Х	-2	-1	0	1	2	3
	у	9	7	5			

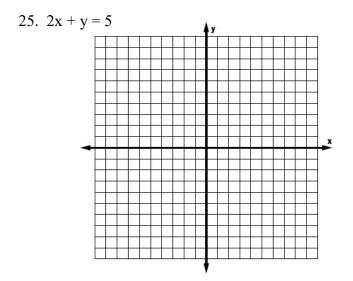
19. Write an equation in functional notation.

20. Write an equation in functional notation.

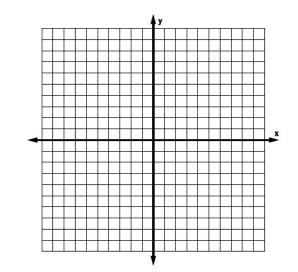
Equations of Linear Function


Standard Form	Ax + By = C
Slope-Intercept Form	y = mx + b, where m is the given slope and b is the y-intercept
Point-Slope Form	y- y ₁ = m (x - x_1), where m is the given slope and (x_1 , y_1) is the given point
Example 1: Write an equa	ation of a line in standard form whose slope is -3 and whose y-intercept is 2.
y = mx + b y = -3x + 2	
+3x +3x	
3x + y = 2	
Example 2: Graph 2x - 4y	/ = 8
2x - 4y = 8	Original equation
-4y = - 2	x + 8 Subtract 2x from each side
<u>-4y</u> = <u>- 2</u>	
-4	-4

The y-intercept of $y = \frac{1}{2}x - 2$ is -2 and the slope is $\frac{1}{2}$. So, graph the point (0, -2). From this point, move up 1 unit and right 2 units. Draw a line passing through both points.

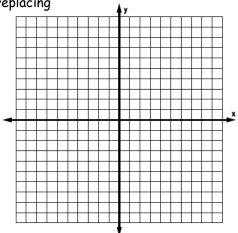

Exercises:Write an equation of the line in Standard Form with the given information.21. Slope: 4, y-intercept -522. Slope: -1, point (2, 4)23. Slope: -3, y-intercept 4

5



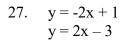
 $y = \frac{1}{2}x - 2$ Simplify

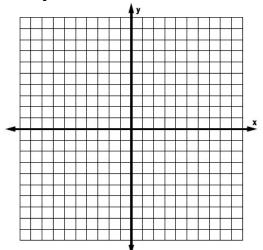
26. x + y = -3

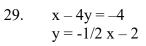

Graphing Systems of Equations

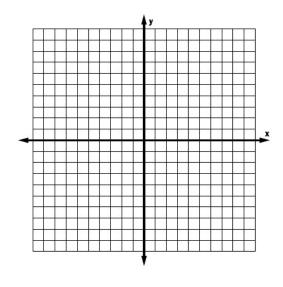
Solve by Graphing One method of solving a system of equations is to graph the equations on the same coordinate plane.

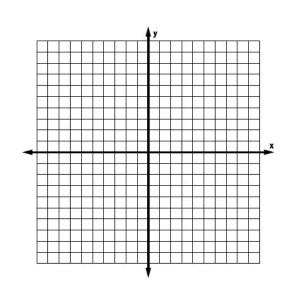
Example: Graph each system of equations. Then determine whether the system has *no* solution, *one* solution, or *infinitely many* solutions. If the system has one solution, name it with the ordered pair.

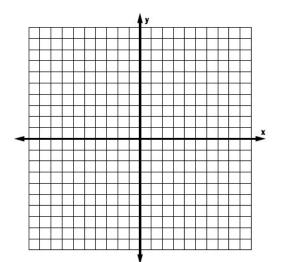

a. x + y = 2 x - y = 6 The graphs intersect. Therefore, there is one solution. The point (4, -2) is where the two graphs intersect. Check this estimate by replacing x with 4 and y with -2 in each equation. x + y = 2 4 + (-2) = 2 √ x - y = 6 4 - (-2) = 4 + 2 or 6 √ The solution is (4,-2).
b. y = 3x + 1 2y = 6x + 2 The graphs are the same equation. Therefore, the

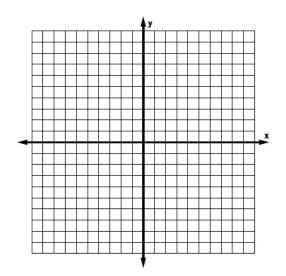

solution is infinitely many solutions.


Exercises:


Graph each system of equations. Then determine whether the system has *no* solution, *one* solution, or *infinitely many* solutions. If the system has one solution, list the ordered pair.


$$\begin{array}{ll} 28. & y=2x \\ & x+y=-3 \end{array}$$





3x + y = 83x - y = -2

3x + 2y = 63x + 2y = -431.

Example 1: use substitution to solve the system Example 2: Solve for one variable, then of equations. substitute. y = 3x x + 3y = 72x - y = -62x - 4y = -6Substitute 3x for y in the second equation. Solve the first equation for x since the coefficient 2x - y = -6second equation of x is 1. 2x - 3x = -6substitute y = 3xx + 3y = 7 First equation -1x = -6 combine like terms x + 3y - 3y = 7 - 3ySubtract 3y from each side x = 6 Divide each side by -1 x = 7 - 3y Simplify Find the value of y by substituting 7 - 3y for x in and simplify. the second equation. Use y = 3x to find the value of y. 2x - 4y = -6Second equation y = 3x First equation 2(7-3y) - 4y = -6x = 7 - 3y 14 - 6 y - 4y = -6 Distributive Property y = 3(6) substitute x = 6y = 18 14 - 10y = -6 Combine like terms. simplify The solution is (6, 18). 14 - 10y - 14 = -6 -14 Subtract 14 from each side. -10y = -20 Simplify. Divide each side by -10 and y = 2 simplify. Use y = 2 to find the value of x. x = 7- 3y x = 7 - 3(2)x = 1

The solution is (1, 2).

Exercises: Use substitution to solve each system of equations. If the system does not have exactly one solution, state whether it has *no* solution or *infinitely many solutions*.

32. $y = 2x$	33. $x = 3y$	34. $x = 2y - 5$
3x - y = 1	y = x - 2	x = 2y + 4

Elimination Using Addition and Subtraction

Example 1: Use addition to solve the system of equations

x - 3y = 7 3x + 3y = 9

Write the equations in column form and add to eliminate y.

The

Substitute 4 for x either equation and solve for y.

x - 3y = 7	original
4 - 3y = 7	substitute 4 for x
-4 -4	subtract 4 to both sides
<u>-3y</u> = <u>3</u>	divide both sides by -3
-3 -3	
y = -1	
solution is (4, -1).	

Example 2: The sum of two numbers is 25 and their difference is 1. Find the numbers.

Let x represent one number and y represent the other number.

$$x + y = 25$$
(+) $x - y = 1$

$$2x = 26$$

$$\frac{2x}{2} = \frac{26}{2}$$

$$x = 13$$
Substitute 13 for x in either equation.
$$13 + y = 25$$

$$-13 - 13$$

y = 12 The numbers are 13 and 12.

Exercises: Use elimination to solve each system of equations.

35. $3x - 2y = -3$	36. $2x - 3y = 14$	37. $x + y = 5$
4x + 2y = 10	x + 3y = -11	x - y = -3

Multiplying a Polynomial by a Monomial

Product of Monomial and Polynomial: The Distributive Property can be used to multiply a polynomial by a monomial.

Example 1: Find $-4x^2$ ($3x^2 + 5x - 6$).	Example 2: Simplify $-2(5x^2 + 6x) - x(x^2 + 3x)$
$-4x^2(3x^2+5x-6)$	$-2(5x^2 + 6x) - x(x^2 + 3x)$
$= -4x^2 (3x^2) + (-4x^2)(5x) + (-4x^2)(-6)$	= -2(5x ²) + (-2)(6x) + (-x)(x ²) + (-x)(3x)
$= -12x^4 + (-20x^3) + (24x^2)$	= -10x ² + (-12x) + (-x ³) + (-3x ²)
$= -12x^4 - 20x^3 + 24x^2$	= $(-x^3) + [-10x^2 + (-3x^2)] + (-12x)$
	$= -x^3 - 13x^2 - 12x$

Exe	ercises: Find each product.		
38.	$2x(4x^2+3x-5)$	39. $x(3x^2 + 2x - 8)$	40. $-3xy(2y + 5x^2)$

41. $-2c(c^2 + 4c - 5)$ 42. $8x(x^3 - 2x^2 + 3x - 5)$ 43. $-4b(2b^3 + 4b - 5)$

Factoring Using the Greatest Common Factor

Example 1: Use GCF to factor 12mn + 60m ²	Example 2: Factor 6ax + 3ay + 2bx + by
Find the GCF of 12mn and 60m ²	by grouping.
12mn = 2· 2· 3· m · n	6ax + 3ay + 2bx + by
$60 \text{ m}^2 = 2 \cdot 2 \cdot 3 \cdot 5 \text{ m} \cdot \text{m}$	= (6ax + 3ay) + (2bx + by)
$GCF = 2 \cdot 2 \cdot 3 \cdot m \text{ or } 12m$	= 3a (2x + y) + b (2x + y)
Write each term as the product of the GCF and its	= (3a + b)(2x + y)
remaining factors.	
$12mn + 60m^2 = 12m (1 \cdot n) + 12m (5 \cdot m)$	Check using the FOIL method.
= 12m (n) + 12m (5m)	(3a + b)(2x + y)
= 12m (n + 5 m)	= 3a(2x) + (3a)(y) + (b)(2x) + (b)(y)
12mn + 60m ² = 12m (n + 5 m)	= 6ax + 3ay + 2bx + by

Exercises: Factor each polynomial	<i>!</i> .	
44. $12x^2 + 18x$	45. $40xy^2 + 20x^2y - 10x$	46. $c^4 - 9c^3 + 5c^2$

47. $8x^2 - 4x$	48. $8d^3 + 6d^2 - 10d$	49. $35y^4 - 28y^3$
-----------------	-------------------------	---------------------

<u>Multiplying Polynomials</u>

Multiply Binomials: To multiply two binomials, you can apply the Distributive Property twice. You can use FOIL (First, Outer, Inner and Last) method.

<i>Example 1:</i> Find (x + 5)(x - 7) (x + 5)(x - 7)	<i>Example 2:</i> Find (x - 2) (x + 5) using FOIL method.
= x (x - 7) + 5 (x - 7) = (x)(x) + x (-7) + 5(x) + 5(-7) = x ² - 7x + 5x - 35 = x ² - 2x - 35	(x - 2) (x + 5) First Outer Inner Last = (x)(x) + (x)(5) + (-2) (x) + (-2)(5) $= x^{2} + 5x + (-2x) - 10$ $= x^{2} + 3x - 10$

Exercises: Find each product.

50. $(x+4)(x+5)$	51. $(2x + 1)(2x + 1)$	52. $(x + 5)(x - 3)$
------------------	------------------------	----------------------

53. ((2x-3)(3x-5)	54.	(4x + 1)(4x - 1)	55.	(4n+3)(5n-4)
(• • • •	()		()