Fig. 1. Hawk ground-to-air missile (courtesy of the Raytheon Co.).

he author undertook this article with trepidation, since thou-

sands of papers and scores of books on optimal control were
written during this 35-year period, and most of the authors are
still alive. He felt it was too early to assess developments during
the last 10 years. He has tried to be objective, but realizes his
own experience inevitably colors his judgment. The subject
deserves a book, not just a short article, and should include the
parallel history of differential games. However, he hopes the
article may convey the admiration he has for the many people
who helped to create optimal control theory and also for those
who showed how to apply it to engineering problems. He apolo-
gizes to those whose contributions were overlooked or underval-
ued. He would be pleased to receive corrections and additions.

Roots in the Calculus of Variations
Optimal control (OC) is one of several applications and
extensions of the calculus of variations (CV). It deals with
finding control time functions (histories) or control feedback
gains that minimize a performance index with differential equa-
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tion constraints. CV also deals with functions of more than one
variable and is used to postulate variational principles in physics.

Herman H. Goldstine, a former assistant to Gilbert A. Bliss
at the University of Chicago, has written an excellent, scholarly
history [1] of CV from its beginnings to the Chicago school in
the early 20th century.

Goldstine suggests that CV started with Pierre de Fermat
(1601-1665) when he postulated his principle that light travels
through a sequence of optical media in minimum time (1662).
Galileo Galilei (1564-1642) posed two problems in 1638 which
were later solved by CV: (1) the “brachistochrone” problem of
finding the shape of a wire such that a bead sliding along it
traverses the distance between the two end points in minimum
time, and (2) the shape assumed by a “heavy chain” hanging
between two points. However, Galileo’s conjectures on the so-
lutions were incorrect. John Bernoulli (1667-1748) used Fer-
mat’s ideas to solve a discrete-step version of the brachistochrone
problem in 1697. Isaac Newton (1642-1727) invented CV in
1685 to find the minimum drag nose shape of a projectile, but
did not publish his method until 1694. Bernoulli challenged his
colleagues to solve the continuous brachistochrone problem in
1699; not only did he solve it himself, but so did Leibniz
(co-inventor of the calculus with Newton), his brother James,
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I’Hospital, and Newton (anonymously, because he disliked con-
troversies).

Leonard Euler (1707-1783), inspired by John Bernoulli, pub-
lished a treatise in 1744 called “The Method of Finding Curves
that Show Some Property of Maximum or Minimum.” He treated
many special problems and gave the beginnings of a real theory
of CV. Jean Louis Lagrange (1736-1813) corresponded with
Euler, and invented the method of “variations” which Euler
generously praised and which gave the subject its name. La-
grange also invented the method of “multipliers” (not published
until 1762); in modern nomenclature these multipliers are “sen-
sitivities” of the performance index to changes in the “states.”
Euler adopted this idea too and gave the first-order necessary
conditions for a stationary solution, which today we call the
Euler-Lagrange equations.

Adrien Marie Legendre (1752-1833) was the first to treat the
second variation (1786). However, it was not until 1836 that Karl
Gustav Jacob Jacobi (1804-1851) gave a more insightful treat-
ment and discovered “conjugate points” in fields of extremals.
Jacobi showed that the partial derivatives of the performance
index with respect to each parameter of a family of extremals
(which today we call “states”) obeyed a certain differential
equation. At almost the same time William Rowan Hamilton
(1805-1865) published his work on least action in mechanical
systems which involved two partial differential equations. Jacobi
criticized Hamilton’s work in 1838, showing that only one partial
differential equation was required. The result is the Hamilton-Ja-
cobi equation, which is the basis of “dynamic programming”
developed by Bellman over 100 years later (see below).

Karl Wilhelm Theodor Weierstrass (1815-1897) put CV on a
more rigorous basis and discovered his famous “condition”
involving an “excess-function” which is the predecessor of the
“maximum principle” of Bellman and Pontryagin in this century.
In this period, Alfred Clebsch (1833-1872) gave a sharper inter-
pretation of Legendre’s condition (the Legendre-Clebsch condi-
tion) which, in modern language, states that the second derivative
matrix of the Hamiltonian with respect to the controls must be
positive definite (assuming no active control or state constraints).

Oskar Bolza (1857-1942) and Gilbert A. Bliss (1876-1951)
built on the work of Weierstrass at the University of Chicago and
gave CV its present rigorous mathematical structure [2, 3]. Both
were elected to the National Academy of Sciences, but Bolza lost
membership when he became a German citizen in 1911. Heste-
nes, another former assistant to Bliss, states [4] that “The maxi-
mum principle in control theory is equivalent to the conditions
of Euler-Lagrange and Weierstrass in the classical theory. The
development given here is an outgrowth of a method introduced
by McShane in 1939 [5] and later modified and extended to
optimal control theory by Pontryagin and his school.” McShane
(1904-1989), still another former assistant to Bliss, became one
of the prominent American mathematicians of this century.

Placido Cicala [6] was one of the first to write a clear,
straightforward monograph on the possible uses of CV for engi-
neering design. Derek Lawden [7] was among the first to see the
uses of CV for optimal spacecraft trajectories.

Roots in Classical Control
Obviously OC also has roots in classical control theory.
Classical control is based largely on cut-and-try methods of
synthesis. A type of feedback control compensation was postu-
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lated such as proportional-integral-derivative, lead, or lag, and
the gains were adjusted until the performance of the closed-loop
system was “satisfactory.” An excellent history of classical con-
trol is given in [8].

During and after WWII, analytical methods based on
Laplace/Fourier transforms and complex variables were devel-
oped for predicting stability and performance of closed-loop
control systems. Gradually performance criteria became more
quantitative and, since the available theory was in the frequency
domain (Black, Nyquist, Bode, and Nichols), it was natural for
these criteria to be expressed as frequency response criteria, such
as gain and phase margins. Evans developed his root locus
method of synthesis about 1950, and root locus plots in the
complex s-plane became as common as Nyquist and Bode plots.
Analog computers also became available in the 1950s so that
time-response criteria were easier to check, such as overshoot
and settling time for a step command.

Integral square error as a control design performance index
appeared in the book by Newton, Gould, and Kaiser [9] in 1957.
A constraint on integral square control is mentioned, but no clear
algorithm was given. They took a position somewhere between
classical control and OC by postulating the form of the compen-
sation and using a constraint on bandwidth to determine the
optimal gains. Chang [10] in 1961 clearly states the need for a
constraint on integral square control and adjoins it to the integral
square error with a positive weighting factor 1. He also proposed
a “root-square locus” vs. K in the complex s-plane, an important
connection to classical control theory.

In 1960 Kalman [11] introduced an integral performance
index which had a quadratic penalty on output errors and control
magnitudes, and used CV to show that the optimal controls were
linear feedbacks of the state variables. His theory applied to
time-varying linear systems and to multiple-input, multiple-out-
put (MIMO) systems. This was a very significant contribution
since MIMO problems had previously been designed by “suc-
cessive loop-closure,” which can easily give results that are far
from optimum, e.g., poorly coordinated controls that fight each
other, thus wasting control authority. Athans [12] later named
this the Linear Quadratic Regulator or LQR. Kalman also
showed that the optimal state-feedback gain matrix could be
obtained by solving a backward Riccati equation to steady-state
(see below). In his papers he introduced the concept of state and
control variables and proposed a compact vector-matrix notation
that became standard in OC. State variables were inherent in the
use of analog computers (early 1950s), since one state variable
was associated with each integrator.

Roots in Random Processes

The theory of random processes, begun about 1900 with
Einstein’s paper on Brownian motion, became the fully devel-
oped theory of generalized harmonic analysis by the 1940s,
largely due to Norbert Weiner and G.1. Taylor [13]. In particular,
Weiner’s theory of filtering noisy signals, based on minimizing
the mean square estimate error, was an important advance.
Newton, Gould, and Kaiser [9] used gaussian disturbance inputs
characterized by rational power spectra, and extended the inte-
gral square error performance index to the mean square estimate
error performance index (the expected value of the integral
square error). Kalman and Bucy [14] extended Weiner’s optimal
filter problem [15] to time-varying linear systems and showed
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that the optimal filter gains could be obtained by solving a
forward Riccati equation. This became known as the Linear
Quadratic Estimator or LQE. The LQE uses the system model in
state variable form with an added linear feedback of the estimate
error, i.e., the difference between the actual measurement and the
current estimate of the measurement. A year or two later, [16, 17]
showed that feeding back the estimated states from the LQE with
the gains from the LQR minimized the expected value of the
integral quadratic PI if the white noise inputs are gaussian; this
became known as the Linear Quadratic Gaussian (LQG) com-
pensator. This compensator was actually shown a few years
earlier in the field of econometrics by Simon [18] using dynamic
programming (see below). This “separation theorem” greatly
simplifies the synthesis of optimal controllers. Laning and Battin
[19] and Battin [20] made key contributions to the practical
application of gaussian random processes in navigation and
guidance. In particular, Battin was the key member of the group
at the MIT Draper Lab that designed the guidance logic for the
Apollo moon landing. He has written a very interesting short
history of the evolution of space guidance in [21].

Roots in Linear and Nonlinear Programming

OC also has roots in linear and nonlinear programming
(NLP), i.e., parameter optimization with inequality and/or equal-
ity constraints, which were developed shortly after WWII [22,
23]. In particular, Kuhn and Tucker [23] gave a simple necessary
condition for the system to be on a constraint boundary, namely
that the gradient of the performance index must lie inside the
“cone” of the constraint gradients. Professional codes have since
been developed that solve NLP problems with thousands of
parameters [24, 25]. The steady-state LQ control problem can be
solved using NLP by optimizing the parameters of an assumed
compensator form [26].

For numerical solutions of optimal trajectory problems the
control history must be approximated by values at a finite
number of time points, so collocation methods using NLP can be
used to solve such problems [27]. While these methods do not
take advantage of the sequential dynamics, they allow the use of
professional NLP codes that reliably handle inequality con-
straints on the controls and states (see below). Optimal trajectory
problems can be solved using NLP codes by parametrizing the
control histories [27] or the output histories using the concept of
“inverse” OC [28].

Algorithms and the Digital Computer

There is little question that the truly enabling technology for
OC is the digital computer which appeared in the middle 1950s.
Before that, only rather simple problems could be solved, so CV,
OC, and NLP were little used by engineers.

To use digital computers for solving OC problems, one needs
algorithms and reliable codes for these algorithms. This is per-
haps the main difference between OC and CV. Knuth [29],
among others, pointed out that development of efficient algo-
rithms is a challenging intellectual activity. However, few mathe-
maticians other than Knuth have been interested in numerical
methods and algorithms, leaving this field to applied mathema-
ticians, computer scientists, and engineers.
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Dynamic Programming and the Maximum Principle

Dynamic Programming, a new view and an extension of
Hamilton-Jacobi theory, was developed by Bellman and his
colleagues starting in the 1950s [30]. It deals with families of
extremal paths that meet specified terminal conditions. An “op-
timal return function” V(x,f) was defined as the value of the
performance index starting at state x and time ¢, and proceeding
optimally to the specified terminal conditions. Associated with
V is an optimal control function u(x,f) which, in control termi-
nology, is a feedback on the current state x and the time ¢. Hence
another name for Dynamic Programming might be nonlinear
optimal feedback control. Bellman extended Hamilton-Jacobi
theory to discrete-step dynamic systems and combinatorial sys-
tems (discrete-step dynamic systems with quantized states and
controls). The partial derivatives of V(x,7) with respect to x are
identical to Lagrange’s multipliers, and a very simple derivation
of the Buler-Lagrange equations can be made using Dynamic
Programming [31].

However, the Bellman school underestimated the difficulty
of solving realistic problems with DP algorithms. The “curse of
dimensionality” (Bellman’s own phrase) causes Dynamic Pro-
gramming algorithms to exceed the memory capacity of current
computers when the system has more than two or three state
variables. However, if the state space is limited to a region close
to a nominal optimum path, the Dynamic Programming problem
can often be well approximated by a linear-quadratic (LQ)
problem, i.e., a problem with linear (time-varying) dynamics and
a quadratic performance index whose (time-varying) weighting
matrices are the second derivatives of the Hamiltonian with
respect to the states and the controls [32, 33, 34]. This is the
classical Accessory Minimum Problem, the basic problem for
examining the second variation in CV, and it was well understood
by 1900. However, the Accessory Minimum Problem was not
easily accessible to engineers since the CV treatises were written
in rigorous mathematical language and contained few examples
of the “controls” type; indeed, few interesting examples can be
calculated without computers. The Accessory Minimum Prob-
lem can be formulated as a time-varying linear two-point bound-
ary-value problem, but it is often not a trivial task to solve such
problems since the obvious “shooting” method often fails due to
the inherent instability of the Euler-Lagrange equations for both
forward and backward integration.

The Maximum Principle is an extension of Weierstrass’ nec-
essary condition to cases where the control functions are
bounded [35], p. 225. It was developed by Pontryagin and his
school in the USSR [36]. In OC terminology, it states that a
minimizing path must satisfy the Euler-Lagrange equations
where the optimal controls maximize the Hamiltonian within
their bounded region at each point along the path (Pontryagin
used the classical definition of the Hamiltonian, which is oppo-
site in sign from the one commonly used today). This transforms
the CV problem to a NLP problem at each point along the path.
Letov [37] and his students were among the first to attempt some
engineering applications of CV in the USSR. '

The Maximum Principle deals with one extremal at a time,
while Dynamic Programming deals with families of extremals.
The Maximum Principle is inherent in Dynamic Programming
since the Hamilton-Jacobi-Bellman equation includes finding
the controls (possibly bounded) that minimize the Hamiltonian
at each point in the state space.
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Calculating Nonlinear Optimal Trajectories

An important use of OC is for finding optimal trajectories for
nonlinear dynamical systems, particularly for aircraft, space-
craft, and robots. The American rocket pioneer, Robert H. God-
dard (1882-1945), posed one of the first aerospace OC problems
in 1919: Given a certain mass of rocket fuel, what should the
thrust history be for the rocket to reach maximum altitude? The
problem was formulated as a CV problem by Hamel in 1927, and
an analytical solution was given by Tsien and Evansin 1951 [32],
p. 253. W. Hohmann determined the optimal impulsive transfer
between circular orbits in 1925 [38]. George Leitmann edited the
first authoritative book on OC [39] in 1962, which contained
chapters by himself, Richard Bellman, John Breakwell, Ted
Edelbaum, Henry Kelley, Richard Kopp, Derek Lawden, Angelo
Miele, and other pioneers of OC. Athans and Falb [40] authored
the first textbook on OC in 1966.

Some of the first numerical solutions for optimal rocket
trajectory problems were given by Bryson and Ross [41], Break-
well [42], and Okhotsimskii and Eneev [43]. Fig. 2 shows
maximum range paths for a short range rocket with drag [41].
The parameters used in these calculations were approximately
those of the Hawk missile of that period (see Fig. 1).

These papers used the shooting method of guessing the initial
values of the Lagrange multipliers A(1,), integrating the Euler-
Lagrange equations forward, and then interpolating on the ele-
ments of A(f,) until the final conditions are satisfied. This method
is feasible for conservative systems (e.g., trajectories in space)
but it is usually not feasible for nonconservative systems (e.g.,
aircraft trajectories). The reason for this is that the Euler-La-
grange equations are unstable for nonconservative systems for
both forward and backward integration, causing loss of numeri-
cal accuracy for computer solutions. To avoid the instability
problem, the initial values of the Lagrange multipliers from a
gradient code (see below) may be used as initial guesses. This is
of interest only if a very precise solution is desired; gradient
solutions are often sufficiently accurate for engineering pur-
poses. Another way to get around the instability problem is to
use a “multi-shooting” algorithm [44] which divides the path into
shorter segments. A multi-shooting Fortran code (BNDSCO)
was developed by Bulirsch [45] and his students at the University
of Munich [46, 47, 61].

Gradient algorithms were proposed by Kelley and his col-
leagues at Grumman [48, 49] and by Bryson and Denham at
Raytheon [50]. These algorithms eliminate the instability prob-
lem of the shooting method but they require reasonable initial
guesses of the control histories. The EOM are integrated forward
and the trajectory is stored; then the adjoint equations (Lagrange
multipliers) are integrated backward over this nominal trajectory,
which is a stable integration. This determines the impulse re-
sponse functions (the “gradients™) of the performance index and
the terminal constraints with respect to perturbations in the
control histories. The control histories are then changed in the
direction of the negative gradients (for a minimum problem) and
the procedure is repeated until the terminal conditions are satis-
fied to a satisfactory accuracy and the performance index is no
longer decreasing significantly. [48] used penalty functions for
handling the terminal constraints, whereas [50] used a projected
gradient method. A general-purpose MATLAB gradient code
(FOPT) was developed at Stanford University by Hur and
Bryson [51].
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Fig. 2. Maximum range paths for a short-range rocket (zero lift);
initial weight 1,000 ibs., fuel weight 500 Ibs., CpS = .47 ft2, specific
impulse 208 sec.
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Fig. 3. Minimum time path from Earth orbit to Mars orbit using low
thrust (Kopp and McGill); thrust direction shown every 9.65 days.

One of the first spacecraft applications of the gradient method
was made by Kopp and McGill [49]. They found the thrust
direction program for a low-thrust spacecraft to go from Earth to
Mars in minimum time. A recomputation of that path is shown
in Fig. 3 [49].

One of the first aircraft applications of the gradient method
was made in [50]. Raytheon was interested in determining how
rapidly the supersonic F4 (Phantom) fighter could reach a high
altitude and get into a position to launch their Sparrow missile
(see Fig. 4).

Using aerodynamic data from McDonnell and thrust data
from General Electric, Denham calculated [50] the minimum
time-to-climb path to an altitude of 20 km, Mach 1, and level
flight, using angle of attack as the control variable (see Fig. 5).
The path was tested in January of 1962 at the Patuxent River
Naval Air Station. The co-pilot had a card with the optimal Mach
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Fig. 4. McDonnell F4 phantom aircraft with two General Electric
J-79 turbojet engines.
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Fig. 5. Minimum time to climb path for F4 Phantom aircraft using
optimal control and energy-state methods.

number tabulated for every 1,000 feet of altitude, which he read
off to the pilot as they went through that altitude. The pilot then
moved the stick forward or backward to get as close to this Mach
number as he could. They got to the desired flight condition in
338 seconds, where the predicted value was 332 seconds. This
was a substantially shorter time to that flight condition than had
been achieved by cut-and-try.

A few years later, a simpler approximate method, using only
two aircraft states (energy per unit mass and mass) was used to
calculate the same optimal flight paths using velocity as the
control variable [52]. Fig. 5 [50] shows these computations are
very close to the more precise five-state (mass point approxima-
tion) computations. The energy-state method shows the reason
for the unusual flight path: the excess power (thrust minus drag)
as a function of altitude and velocity has the usual high “ridge”
justbelow Mach 1 from sea level to about 30 kft; this is the place
to rapidly add potential energy (altitude); however, because the
thrust increases so much with speed for these engines, another
high “ridge” appears between 20 and 30 kft for Mach number
between 1 and 2; this is the place to rapidly add kinetic energy
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(velocity), which can then be traded for potential energy in a
“zoom climb” to 20 km and Mach 1.

During World War II, Kaiser [53] in Germany suggested ways
to take advantage of the new jet engines for better climb perform-
ance. In the 1950s, Lush [54] and Rutkowski [55] introduced the
concept of “energy climb,” which inspired the work in [52].

There are also second-order (Newton-Raphson) algorithms
which are related to the Accessory Minimum Problem and
neighboring optimum perturbation feedback control mentioned
above [56[ 57, 34, 33]. However, these involve substantially
more programming than the first-order (gradient) methods and
require analytic expressions for the second (as well as the first)
derivatives of the system equations and the terminal boundary
conditions.

Other important applications of optimal control methods are
determining optimal aerodynamic shapes [58] and optimal struc-
tural shapes [59].

Inequality Constraints

Control variable inequality constraints can be handled by the
maximum principle using a shooting method. They can also be
handled using penalty functions or “slack variables” with shoot-
ing or gradient methods. The latter idea was suggested by Val-
entine [60], another member of the Bliss school.

State variable inequality constraints are more difficult to
handle, since the optimal path must enter “tangentially” onto a
constrained arc, i.e., one or more time derivatives of the con-
straint must be zero at entry points. Also, the number of con-
strained arcs is not known ahead of time. The Maximum
Principle does not apply in the form given by Pontryagin. Gamk-
relidze gave necessary conditions for such problems [36] but did
not give a method of solution. Later Dreyfus [31] and Speyer
[61] gave gradient methods for solving OC problems with state
variable inequality constraints, where the number and sequence
of constrained arcs are assumed known. Collocation methods
using generalized gradients and NLP codes are the most reliable
methods for solving problems with state variable inequality
constraints, since they do not assume the number and sequence
of constrained arcs [62, 27, 28].

Singular Problems

Some OC problem solutions contain singular arcs, i. e., arcs
where the second derivative matrix of the Hamiltonian with
respect to the controls is only positive semi-definite, e. g.,
Goddard’s problem (see above) and Ross’s problem (see Fig. 2)
where the controls enter the EOM linearly. Extensions of the
necessary conditions for optimality and some methods of nu-
merical solution for such problems have been found, but precise
solutions are still difficult to find [63]. Approximate solutions
can be found using collocation methods, generalized gradients,
and NLP codes [62, 76].

Inverse OC

Inverse control methods were developed in the 1970s [64] for
finding control histories to produce desired ouput histories of
linear and nonlinear dynamic systems. However, with simple
choices of output histories, the resulting control histories are
often infeasible. This gave rise to the idea of inverse optimal
control or “differential inclusion” [76] where the output histo-
ries, instead of the control histories, are iterated using collocation
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and NLP codes to minimize a performance index until the
controls are feasible. The control histories are obtained by nu-
merical differentiation of the output histories. This method is
attractive for several reasons: (1) approximate output histories
are usually easier to guess than the control histories (to start the
iterative computation), (2) many NLP codes find gradients nu-
merically so that analytical gradients do not need to be entered,
(3) for problems with state/control constraints and singular arcs,
the number and sequence of constrained and singular arcs does
not need to be known ahead of time. Currently this method is
limited to relatively “short” histories if the gradients are found
numerically.

Riccati Equations

Kalman [11, 65] showed that the MIMO LQ OC problem
(essentially the Accessory Minimum Problem except that the
weighting matrices are chosen by the designer) can be solved
numerically in an elegant, efficient manner with a “backward
sweep” of a matrix Riccati equation. Jacopo Francesco Riccati
(1676-1754) gave the scalar form of his equation for solving
linear second-order two-point boundary-value problems. Kal-
man was influenced by the work of Caratheodory [66]. Gelfand
and Fomin [35] gave a clear description of the sweep method,
which was translated into English in 1963.

MacFarlane [67] proposed an algorithm for solving the
steady-state Riccati equation for time-invariant dynamic sys-
tems which used eigenvector decomposition of the Euler-La-
grange equations. This method has many similarities to the
Weiner-Hopf technique used earlier in [9]. However, eigensys-
tem codes available at that time were slow and not very accurate.
Kalman and Englar [68] proposed integrating the Riccati equa-
tion backward to steady-state; this is often quite slow since the
time-step required for an accurate solution is very small. Wilkin-
son et al. [69] developed an efficient code for the QR algorithm
of Francis [70], which finds the eigensystem of linear dynamic
systems with complex eigenvalues. Hall [71] used this code with
MacFarlane’s algorithm to develop a code he called OPTSYS.
This allowed routine solution of steady-state Riccati equations,
and is the basis for many of the professional codes now available
(e.g., MATLAB, MATRIX-X, and CONTROL-C). However, the
QR algorithm does not handle repeated eigenvalues so OPTSYS
was not quite as reliable as desired. This restriction was later
removed in some professional codes by using Schur decompo-
sition instead of eigenvector decomposition [72]. Figs. 6 and 7
[73]show the closed-loop path followed by a 747 airliner to make
a last minute “S-turn” to line up with the center of the runway;
the two controls, aileron and rudder, are well coordinated during
the maneuver; the feedback gains were computed using
OPTSYS and are now easily reproduced using the “LQR” com-
mand in MATLAB.

Robust Optimal Control and Worst-Case Design

After the first flush of success in the 1970s, it became apparent
that some LQG compensators had serious robustness problems,
i.e., they were sensitive to variations in the plant parameters and
to unmodeled higher-frequency dynamics. This was particularly
true for systems with lightly damped oscillatory modes such as
flexible space vehicles. Thus began a period of research in the
1980s on how to modify LQG designs to ensure robustness. At
the same time, a new form of OC called H-infinity (H) was
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Fig. 6. Two-control example using LOR feedback gains—747 S-turn
just before landing; lateral distance/specific force and roll/yaw
angles.
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Fig. 7. Two-control example using LQR feedback gains—747 S-turn
Jjust before landing; aileron/rudder angles and sideslip velocity.

introduced which also has robustness problems [74]. H is a form
of worst-case design and may be regarded as the steady-state of
a differential game between the controls and the disturbances
with integral quadratic constraints. Plant parameter robustness
can be provided by designing the compensator to stabilize a
family of plants having different parameters distributed over the
anticipated range of parameter variations. This is done in classi-
cal compensator design by providing gain and phase margins. A
method for doing it was given by Ly [26] for LQG designs and
by Doyle [75] for H.. designs. An attempt is made to minimize
the QPI for the worst case of parameter deviations within a
bounded range of such deviations; this is a “minimax” problem
since the compensator parameters depend on the worst plant
parameters and vice-versa.
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Robustness to unmodeled higher-frequency plant dynamics
is handled by inserting roll-off filters in the compensator. This is
still done on a rather ad hoc basis and is an area of ongoing
research.

An important extension of SISO frequency domain design
concepts to MIMO systems originated in the 1970s, using “sin-
gular value” concepts [76, 77]. This is also a form of worst-case
design, since the maximum singular value of a matrix is the
magnitude of the largest possible output vector for an input
vector whose magnitude is unity.

Summary

Optimal control had its origins in the calculus of variations
in the 17th century (Fermat, Newton, Liebnitz, and the Bernoul-
lis). The calculus of variations was developed further in the 18th
century by Euler and Lagrange and in the 19th century by
Legendre, Jacobi, Hamilton, and Weierstrass. In the early 20th
century, Bolza and Bliss put the final touches of rigor on the
subject. In 1957, Bellman gave a new view of Hamilton-Jacobi
theory which he called dynamic programming, essentially a
nonlinear feedback control scheme. McShane (1939) and Pon-
tryagin (1962) extended the calculus of variations to handle
control variable inequality constraints, the latter enunciating his
elegant maximum principle. The truly enabling element for use
of optimal control theory was the digital computer, which be-
came available commercially in the 1950s. In the late 1950s and
early 1960s, Lawden, Leitmann, Miele, and Breakwell demon-
strated possible uses of the calculus of variations in optimizing
aerospace flight paths using shooting algorithms, while Kelley
and Bryson developed gradient algorithms that eliminated the
inherent instability of shooting methods. Also in the early 1960s
Simon, Chang, Kalman, Bucy, Battin, Athans, and many others
showed how to apply the calculus of variations to design optimal
output feedback logic for linear dynamic systems in the presence
of noise using digital control. In the 1980s research began, and
continues today, on making optimal feedback logic more robust
to variations in the plant and disturbance models; one element
of this research is worst-case and H-infinity control, which
developed out of differential game theory.
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