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these is the attempt to find patterns to help us better describe the world, The other theme is
the interplay between graphs and functions. By connecting the powerful equation-solving
techniques of algebra with the visual images provided by graphs, you will significantly
improve your ability to make use of your mathematical sKills in solving real-world problems.

POLYNOMIALS AND RATIONAL FUNCTIONS

O The Real Number System and Inequalities

Although mathematics is far more than just a study of numbers, our journey into calculus
begins with the real number system. While this may seem to be a fairly mundane starting
place, we want to give you the opporiunity to bmsi] up on those pmpeltms that are of
particular interest for calculus,

The most familiar set of numbers is the set of i mtegcrs, cons:slmg of the whole numbers
and their additive inverses: 0, £§, 22, +3, . ... A rational number is any number of the
form %, where p and g are integers and ¢ # 0. For example, %, — and 5% are all rational
numbers. Notice that every integer # is also a rational number, since we can wrile it as the

) H . .

quotient of two integers: # = T

. . 2
The irrational nombers are atl those real numbers that cannot be written in the form %,

where p and g are integers. Recall lhql r‘ltioml numbers have decimal expansions that either
terminate or repeat. For instance, § = 0.5, 1 = 0.33333, { = 0.125and § L = 0.166666 are
all rational numbers. By contrast, irrational numbers h'wc decimal f:\p'\llSlOllS that do
not repeat or terminate. For inslance, three familiar irrational numbers and their decimat
expansions are

V2 = 1.4142135623 .. .,
r =23.1415926535. ..

and e=2.71828 18284 ... .

We picture the real numbers arranged along the number line displayed in Figure 0.2
(the real line), The sel of real numbers is denoted by the symbol R.
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FIGURE 0.2
The real line

For real numbers ¢ and b, where a < b, we define the closed interval [«, b} to be the
set of numbers between g and b, including « and b (the endpoints), that is,

la,b}={xeR|a <x < D],

as illustrated in Figure 0.3, where the solid circles indicate that ¢ and b are included in
[, b1.

Similariy, the open interval (a, b) is the set of numbers between a and b, but not
including the endpoints ¢ and b, that is,

(. b)=[xeR|a <x < b},

as illustrated in Figure 0.4, where the open circles indicate that « and b are not included in
{a, b). _ :
You should already be very familiar with the following properties of real numbers.

THEOREM 1.t

If @ and b are real numbers and ¢ < b, then

(i) Forany real numberc, ¢ +¢ < b-t+c.
(ii) Forreal numbers cand d,ifc < d, thena +c¢ < b+ d.
(iii) For any real numbere > 0,a-¢c < b c.
(iv) For any real numberc < Q,a-¢ > b c.

We need the properties given in Theorem 1.1 to solve inéqualities. Notice that

(i) says that you can add the same guantity to both sides of an inequality. Part (iii)
says that you can multiply both sides of an inequality by a positive number, Finally,
(iv) says that if you multiply both sides of an in¢quality by a negative number, the

¢ incquality is reversed. - .

We iltustrate the use of Theorem 1.1 by solving a simple incquality.

EXAMPLE 1.1 Solving a Linear Inequality

Solve the linear inequality 2y + 5 < 13.

Solution We can usc the properties in Theorem 1.1 to isolate the x. First, subtract 5
from both sides to obtain '

@2yx+5—-5<13-5
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* inequalities simultaneously, First, subtract 1 from each term, to get

x—1
_ Selve the inequality ——— = 0.
olv ineq yx+2_ )

or 2y < 8.
Finally, divide both sides by 2 (since 2 > 0, the inequality is_&mt'rcvers_cd) to oblain
x <4, 7

We often write the sohition of an inequality in interval notation, In this case, we get the
interval (—oo, 4). ®_

You can deal with more complicated inequalities in the same way.

2 Solving a Two-Sided Inequality
Solve the two-sided inequality 6 < | —3x < 10,
Solutlon  First, recognize that this problem requires that we find values of v such that
6<]—3x and 1-3x = 10.

Here, we can use the properties in Theorern 1.1 (o isolate he x by working on both

6-1<(l-3x)—1<10—1
or 5« —3x <9,

Now, divide by —3, but be careful. Since —3 < 0, the inequalities arc reversed. We have

5 —3x 9
— e —— D
-3 -3 7 -3

5
—— >z =3
or _ 3 >
s 5
We usually write this as —3<r< -3

or in interval notation as [—3, —3). B ]

You will often need to solve inequalities involving fractions. We present a typical
example in the following.

EXAMPLE 1.3 égi\;ing an Inequaiif;r- Involwng a Fraction

Sotution  In Figure 0.5, we show a graph of the function, which appears to indicate
that the solution includes atl ¥ < —2 and x > }, Carcfully read the inequality and
observe that there are only three ways to satisfy this: either both numerator and
denominator are positive, both are negative or the numerator is zevo. To visualize this,
we draw number lines for each of the individual terms, indicating where cach is
positive, negative or zero and use these to draw a third number line indicating the value
of the quotient, as shown in the margin. I the third number line, we have placed an “&"
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The distance between g and &
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above the —2 to indicale that the quotient is windefined at x = —2. From this last
number line, you can see that the quotient is nonnegative whenever v < -2 orx > L J
We write the solution in interval notation as {(—co, —2) U {1, 00). = S

For inequalities involving a polynomial of dég,ru, 2 or higher, factoring the polynomial
and determining where the individual factors are positive 'md neg;mve as in example 1.4,
will lead to a solulion.

A S OIS

LT . Jep— o e e i

’~X!“MW E L4 ‘Sol\?ing a Quadratic Inequality
Solve the quadratic inequatity
Hr—6=0 - : (L1)

Sohationn In Figure 0.6, we show a graph of the polynomial on the left side of the
inequality. Since this polynomial factors, (1.1) is equivalent to

(x + Dx ~2) = 0. (1.2)

This can happen in only two ways: when both factors are positive or when both factors
are negative. As in example 1.3, we draw number lines for both of the individual
factors, indicating where each is positive, negative or zero and use these to draw a
number line representing the product. We show these in the margin, Notice that the third
number line indicates that the product is posilwe whenwer x < —3orx >.2 We write
this in interval notation as (—oo, —3) U (2, o). . .

No doubt, you will recall the following standard dc.'ﬁniti't_)n.

DEFINITION 1.
ifx >0

- - R
The absolute value of a real number x is |x| == {7’ e
—x, ifx <0

Make certain that you read Definition |. lcorrectly Wxis neg'ttl\'e, then —x is posmvc
This says that |x] = 0 for all real numbers x. For ;nstfmcc asmg the definition,

4] = (- =4

notice that for any real numbers a and b,

la- bt = lal-|b]. .
However, (@ +b] # |al +1b],
in general. (To verify this, simply take ¢ = 5 and b = —2 and compute both quantities.)

However, it is always true that _
la +5 < laj + 1],

This is referred to as the triangle inequality.

The interpretation of |« — &| as the distance between a and b (see the rote in the margin)
is particularly useful for solving inequalities involving absolute values. Wherever possible,
we suggest that you usc this interpretation to read what the mequallly mieans, rather than
merely following a procedure to producc a solution.
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" says, Since |x — 2| gives the distance from-x to 2, (£.3) says that the distance from x to
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Solve the inequality

i Solving an Inequality Containing an Absolute Value.

Ix — 2} < 5. (1.3)

Solution  Before you statt trying to solve this, take a few moments to read what it

2 must be less than 5. So, find all numbers x whose distance from 2 is less than 5. We
indicate the set of all numbers within a distance 5 of 2 in Figure (.8. You can now read
the solution directly from the ﬁgm’c: —3 < x < 7orin interval notation: (—3, )N .

Many inequalities involving absolute values can be solved sunply by lcadmg the in-
equalily correctly, as in example 1.6.

So!vmg an Inequallty with a Sum Inside an Absolute Value

EXAMPLE 1.6
Solve the inequality

¥ +4 <7 _ (1.4
Sotution  To use our distance interpretation, we must first rewrite (1.4) as

< T.

This now says that the distance from x to —4 is less than or equal to 7. We illustr'ttc the
solution in Figure 0.9, from which it follows that —t1 < x <3 or{—11, 3].

Recall that for any real numberr > 0, |x| < ris eqmvalcnl to the following inequality
not involving absolute values:

—Fr <X <n

In example 1.7, we use this to revisit the inequality from example 1.5.

[ 2 N

Eni‘sMP! £ 1.7

AN R

An Altel native Method for Sc;h;l-ng Inecitlaﬁtnes
Solve the inequality [x — 2| < 5. .

Holutionr  This is equivalentto the two-sided inequality
-3 <x—2<3.

Adding 2 to each term, we get the solution

B3 <y <,

or in interval notatton (—3, 7), as before. w . . e IO

Recall that the distance bctwccn two poml% (xy, vp)and (xz2, ya)isa sn‘nple consequence
of the Pythagorean Theorem and is given by

Afxr, yi), (2, 32)) = Viwy = )2 4+ G — y)%

© We illustrate this in Rigure 0,10,
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U.S. Population

Year .
1960 | 179,323,175
1970 | 203,302,031
1980 | 226,542,203
1990 | 248,709,873
xoaly o
o |17

10 |03

20 | 227

30 | 249

Transformed data

4
250 2
&
2001+ o
1501+
100+
50+
= — T
10 20 30

FIGURE 0.11
Population data
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EMAMPLE 1.8 Using the Distance Formula |
Find the distance between the points (1, 2) and (3, 4), 1

Solution  The distance between (1, 2) and (3, 4) is

d(1,2.6,0=VE - 12 +Ed-—22=Vi+d=V8 u

O Equations of Lines

The federal government conducts a nationwide census every 10 years to determine the
population. Population daa for the last sever al (lec1de s are shown in the :\LCOlllpallylllg
table.

One difficulty with ‘umly/mg these data is that' 1he numbers are 5o large. This problem
is remedied by transforming the data. We can simplify the year data by defining x to be
the number of years since 1960. Then, 1960 corresponds to x = 0, 1970 corresponds to
x = 10 and so on. The population data can be simplificd by rounding the numbers to the
nearest million. The transformed data are shown in the accompanying table and a scatler
plot of these data points is shown in Figure 0.11.

Most people would say that the points in Figire 011 ’!ppc(u 16 form a straight line,
(Use a ruler and see i you agree.) To determine whether the points are, in fact, on the same
line (such points are called colinear), we might consider the population growth in each of
the indicated decades. From 1960 to 1970, the growth was 24 million. (That is, to move
from the first point to the second, you increase v by 10 and increase y by 24.) Likewise,
from 1970 to 1980, the growth was 24 million, However, from 1980 to 1990, the growth
was only 22 million, Since the rate of growth is not constant, the data points do not fall on
a line. Notice that to stay on the same line, y would have had to increase by 24 again. The
preceding argument involves the familiar concept of slope.

PDEFIMITION 1.2

For x| # x3, the slope of the Sllalghl line through the points (x;, yi) and (x2, y2) is
the number

m =222 ' (1.5)
RY- R \1 . ' :
When y; = 1, lhe line llnough (x1, v and (s, y;) s ver ll(“l] and the slope is
undefined. :

3

We often describe slc;pe as “the change in y divided by the change in X, written ﬁ—)_,

Rise - . o
or more simply as — (see Figure 0.12a on the foHowing page).
113 :

The slope of a straight line is the same no matter which two points on the line you
seleet. Referring to Figure 0.12b (where the line has positive slope), notice that for any four
points A, B, D and £ on the line, the two right triangles AABC and ADEF are similar.,
Recall that for similar triangles, the ratios of coucspondmg sides must be the same. In this
case, this says that

A)r _ A_):’.
Ay AY
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" Solutlon  First, notice that the slope of the line joining (1,.2) and (3, 10) is

Pretiminaries - : ' . . . 0-8
N
r
y _ B /
Y .
(x5, ¥y) . . . ) . 1
% S — 202 -] : / [
/ : . . . . // E Ay
Ay =357y : / o U"QC
= Rise E/{ Ax
(v, 1} : / ;}:\y’
o Bt — 0
DAy =y . A .
: = Run . / /: ' .- ax
} i b g
%) X
FIGURE 0.12a " FIGURE 0.12b
Slope o Similar triangles and slope

and so, the slope is the same no matter which two points on the line are selected. Furthermore,
a line is the only curve with constant slope. Notice that a line is horizontal if and only if
its slope is zero.

.

EXAMPLE 1.9 Finding the Slope of a Line _
Find the stope of the line through the points (4, 3) and (2, 5).
Solution From (1.5), we get ‘ )

yr—-y 5-3 2
m==——i— = —— = — = —}
Xz — x| 2—4 -2 i

[.10  Using Slope to Determine if Points Are Colinear

EAANMPE
Use slope to determine whether the points (1, 2, (3, 10) and (4, 14) are colinear.,
_)'29)“1 . 10#2 . 8

miz.l’z—.\] - 3-1 _—52

Similarly, the slope through the line joining (3, 10} and (4, 14) is

ya-y 1410 L4
ny = = = 4,
? X2 — X 4-3

Since the slopes are the sune, the points must be colinedr. & . o

Recall that if you know the slope and a point through which the line must pass, you
have enough information to graph the line. The easiest way to graph a line is to plot two
points and then draw the line through them. In this case, you need only to find a second
point.
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44 : ' If a line passes through the point (2, 1) with slopc 5, find a second point on the line and
then graph the line.

T / | 2 X

// Solution  Since slope is given by m = 22 , We !ake m= % y=landx; =2,
24 : Xy —x .
- to obtain
1 -+ ru"'/ ’ ) .
//" ’ S 2 -l
% — b 3 x-2

You are free to choose the x-coordinate of the second point. For instance, to find the
point at xo = 5, substitute this in and solve, From

FIGURE 0.13a ' g Ly _» -1
Graph of straight line 3 5.-2 3 !
y weget 2 =y — 1ory; = 3. A second point is then {5, 3). The graph of the line is shown
4 in Figure 0.13a. An alternative method for [indi'ug a second point is to use the slope
: 2 _ Ay ' o
4T m= - ’
. /-/ - 3 Al ‘
3T - / The slope of % says that if we move three units to the right, we must move 1wo units up
51 L | lostay on the line, as itlustsated in Figure 0.13b.
it L . In example 1.11, the choice of x =5 was entirely arbitrary; you can choose any
3 x-value you want to find a second point. Further, since x can be any real number, you
e —— 1 ¢an leave x as a variable and write out an equation satisfied by any point {x, y) on the line.
O Tn the general case of the fine through the point (xy, yo) with slope m; we have from (1.5) that
—~14 : N ‘
‘ n= '}_ )_E_. (1.6)
FIGURE 0.13b = ‘ e
Using slope to find a second point ~ Multiplying both sides of (1 6) by (¥ — o), we gel
¥ = yo = m{x — xg)
or '
POINT-SLOPE FORM OF A LINE
; | Lyl -+ (1.7

Equation (1.7) is called the point-slope form of the lim_:..

PR e AN VL, L e U

SHAMPLE 112 Fmdmg the Equatlon ofa Line Given Two Points

Find an equation of the linc through the points (3, 1) and (4, — 1), and graph the line.

—-1-1 =2 )
Solution From (1.5), the slope ism = T3 -2, Using (1.7) with stope

m = —2, x-coordinate xp == 3 and y-coordinate yy = I, we get the-equation of the line:

y=-2x-3H+1L | (1.8)

FIGURE 0.14 To graph the line, plot the points (3, 1) and (4, <1}, and you can casily draw the line seen
y=-20x-3}+1 mPBigure 004, W . i
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FIGURE 0.15
Parallel lines

FIGURE 0.16
Perpendicular lines

" orsimply ¥ = 3(x + 1) + 3. We show a graph of both lines in Figure G115, -

In example 1.12, you may be tempted to simplify the expression for y given in (1.8).
As it turns out, the point-stope form of the equation is often the most convenient to work

~ with. So, we will typically not ask you to rewrite this eXpression in other forms. Al times,

a form of the equation called the slope-intercept form is more convenicnt. This has the
form : o
y =y + b;

where m is the slope and b is ‘lhe'y-imerccpt (i.e., the place where the graph crosses the
y-axis). In example 1.12, you simply multiply out (1.8) to get y = —-2x +6+ lor

y= 247

. As you can see from Figure 0. H; the graph crosses the y-axis at ) =17

Theorem 1.2 presents a familiar result on parallel and perpendicular fines.

THEOREM 1.7
Two (nonvertical) lines are parallel if they have the same slope. Further, any two
vertical lines are parallel. Two (nonvertical) lines of slope iy and ino are
perpendicular whenever the product of their slopes is —1 (i.e., iy - my = —1). Also,
any vertical Hne and any horizontal line are perpendicular.

Since we can read the slope from the equation of a line, it’s a simple matter to de-
termine when two lines are parallel or perpendicular, We illustrate this in examples 1.13
and .14, ' '

E¥AMPLE 1,13 Finding the Equation of a Parallel Line

Find an equation of the line parallel to y = 3x — 2 and through the point (-1, 3).

Soiution  IUs easy to read the stope of the line from the equation: s = 3. The
equation of the paraflel line is then '

y=3u—c4n%d

EXAMPLE 114 Finding the Equation of a Perpendicular Line
Find an equation of the line perpendicular to ¥y = —2x + 4 and intersecting the line at
the point (1, 2).

Solution The slope of y = —2x +4 is —2. The slope of the perpendicular line is
then —1/{—2) = % Since the linc must pass through the point (1, 2), the equation of
the perpendicular line is ‘ S

1 _
3= el — 1) b2
b 2(1 )+

We show a graph of the two lines in Figuré 0.6, B - - . ..l

We now refurn to this subsection’s introductory example and use the equation of a line
to estimate the population in the year 2000. ‘
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Population

Functions can be defined by
simple formulas, such as

f(x} = 3x 4 2, but in general,
any correspondence meeting the
requirement of matching
exacily one y to each v defines
a function.

H
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EXAMPLE 1,15 Using a Line to Estlmate Populataon :

Given the population data for the census years 1960, 1970, 1980 and 1990 emmatc the
population for the year 2000,

Solution  We began this subséction by shiowing that the points in the corresponding
lable are not colinear. Nonetheless, they are nearly colinear. So, why not use the straight
line connecting the last two points (20, 227) and (30, 249) (corresponding to the
populations in the years 1980 and 1990) to estimpte the population in 20007 (This is a
simple example of a more general procedure called extrapolation.) The slope of the
ling joining the two data points is

249 --227 22 11

Mo —————— = =,

30 =20 10 -5
The equation of the linc is then . .
1T co
¥y = ——(.t —30) + 249.

See Figure 0.17 for a graph of the line, If we follow ihis line to the point concspondmg
to x = 40 (the year 2000), we have the estimated populauon

1 :
?(40 — 30} + 249 = 271.
That s, the estimated population is 271 million people. The actual census figure for

2000 was 281 million, which indicates that the U.S. population has grown at a rate that
is faster than finear. 4. o e e

O Functions

For any two subsets A and B of the real line, we make the following familiar definition.

FERITION |

A function f is a rule that-assigns exactly one elemem y inaset B toeach element x
inaset A. In this case, we write y = f(x}. -

We call the set A the domain of f. The sct of alt values floym | B is called the
range of f. Fhat is, the range of £ is { f(x)|x € A}. Unless explicitly stated
otherwise, the domain of a function f is the lurgest set of real numbers for which the
function is defined. We refer to v as the independent \Hll‘iblc md o y as the”
dependent var nbie

By the graph of a function f, we mean the graph of the equation y = f(x). That
is, the graph consists of all points (x, y), whuc, X s in lhc domain of f and where

= f{x).

Notice that not every curve is the graph of a function, since for a function, only one
y-value corresponds to a given value of x. Youean graphically determine whether a curve
is the graph of a function by using the vertical line test: if any vertical line intersects the
graph in more (han one point, the curve is not the graph of a function.
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FIGURE 0.19%a

Curve fuils vertical line test

FIGURE 0.19b

Curve passes vertical fine test

* Solution  Notice that the cirele in Figure (.18a is not the graph of a function, since a
~ vertical line at x = 0.5 intersects the circle twice (see Figure 0.19a). The graph in

T T SN

SXAMPLE 1,16 Using the Vertical Line Test

Dretermine which of the curves in Figures 0.18x and 0.18b corresporxd to functions.

¥
. 1 o
; \, by + ' \ ‘
-1 i | ST Y
05 j o2
~e_ | T : . A J
FIGURE 0.I8a . FIGUﬁE 0.18b

Figure 0.18b is the graph of a function, even though it swings up and down repeatedly.
Although horizontal lines intersect the graph repealedly, vertical lines, such as the one
atx = 1.2, intersect only once (see Figure 0.19b). & .. . ..

You are already familiar with a number of different types of functions, and we will only
briefly review these here and in sections 0.4 and 0.5. The functions thal you are probably
most familiar with are pelynomials. These are the simplest functions to work with because
they are defined entirely in terms of arithmetic.

BEFINITION 1.4
A polynomial is any function that can be written in the form
f&) = aux”™ +apoy"! + o arx + ap,

where ag, 4y, &, ..., a, are real numbers (the coefficiellls of the pelynomial) with
tt, # 0and n > 0 is an integer (the degree of the polynomial). ’

Note that the domain of every polynomial function is the entire real line. Further,
recognize that the graph of the linear (degree 1) polynomial f(x) = ax 4 bisastraightline.

SR R AT O e S S

EYAMPLE 1,17 _Sa“r.r;i;l-éul-’olynomials;m

The following are all cxamples of polynomials:
" f(x) = 2 (polynomiul of dégi‘cc 0 or constant),
flx)=3x+2 (polynomidl of degree 1 or linear polynomial),
F(x) = 5x% — 2x + | (polynomial of degree 2 or uadratic polynomial),

F(x) = x* — 2x + 1 {polynomial of degree 3 or cubic polynomial),

(x) = —6x* + 12x” — 35 4 13 (polynomial of degree 4 or quartic polynomial),
LT poly
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and

f(xy = 26 4 6x* — 8x? | x - 3(polynomial of degree 5 or quintic polynomial).

We show graphs of these six functions in Figures 0.20a—0.20f.

FIGURE 0.20a
fxy=2

-6 -4

FIGURE 0.20b
fE)=3x+2 f

/-5t
/ -0}

FIGURE 0.20d
Sy =t —2xv + |

f 104 \
-
FIGURE 0,20e
Flo) = —6x' +12x7 - 3x + 13

and Rational Functions

4
120+ /
i
30+ /
40T
\Wx
-2 2 4 6

FIGURE 0.20c
(=5t —2x + 1

FIGURE 0.20f
fy=27"+6x* — 8?4 v -3

DEFINITION 1.5
Any function that can be written in the form

pix)

f) = 2’

where p and g are polynomials, is called a rational function

Notice that since p(x) aﬁd.q(.\-) are polynomials, they dre both defined for all x, and

50, the rational function f(x) = ’—(9—; is delined for all x for which g(x) £ 0,
e _
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f =

T -1

S

23 4
FIGURE 0.22
y=al—dx+3

v
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XAMPLE 1,18 A Sample Rational Functlon
Find the dom'un of lhe function

x24T — 1

F ==

Solution Here, f(x)is a rational fiinction, We show a graph in Figure 0.21. Its domain
consists of those values of x for which the denominator is nonzere. Notice that

Cod=( DG F2)
and so, the denominator is zero if and only if x = 2, This says that the domain of f is

fx € Blx # £2) = (—00, —2) U (=2, 2) Ui (2, o). 3 -

The square root function is defined in the usual way, When we write y = Jr, we
mean that y is that number for which y* = x and y = 0. In purticular, V4 = 2. Be careful
not to write erroneous stateinents such as 4 = +2. In particular, be caretul to write

_ Vat = xl. _
Since v/x? is asking for the nonnegative number whose square is x%, we are looking for
x| and not x. We can say ’ :

vl =z, only forx = 0.

Similarly, for any integer n > 2, y = ¥ whenever ¥ = x, where for i even, x = 0 and
y =0

SRt scse i P S i e S

E }s J‘XM E‘)Li. 1.19¢  Finding the Domain of a Function ff\;ro-lving
a Square Root or a Cube Root

Fin(_i the domains of f(x) = +/x% — 4 and g(x) = ¥ —4,

Selution  Since even roots are defined enly for nonnegative vatues, f{x) is defined

only for x? — 4 > 0. Notice that this is equivalent to having x% = 4, which occurs when
x > 2orx < —2. The domain of [ is then (—o0, —2] U [2, ©0). On the other hand, odd
roots are defined for both positive and negative values. Comcqnemiy the donain of
g(\) is the entire real line, (—00, 00}, 5L_ S S OO

- We often find it useful 1o fabel intercepts and olhcr significant points on a graph. Finding
these points typically involves solving equations. A solution of the equation f(x} =0 is
calted a zero of the function f or a root of the equation f'(x) = 0. Notice that a zero oflhc
fumction f corresponds to an x-intercept of the graph ot y= f(x}).

oy g [ — e [ et s e = o n

}? ;f’\i\“’f PLF b0 Findririzg Zeros by -Factoring
Find all x- and y-intercepts of f(x) = x% - 4x + 3.
Selution  To find the y-ﬁncrccbl, set v = 0 to obtain
y=0-0+3=3.
To find the x-intercepts, solve the equation f(x) = (). In this case, we can factor to get
J)=x>—dxr+3=( —I}x -3 =0

You can now read off the zeros: v = [ and v = 3, as indicated in Figure 022, ...




Polynomials may also have
complex zeros, For instance,
F(x) =% + | has only the

i

complex zeros x = i, where i |
is the imaginary number deﬁned !

byi=+—1.

.Find the zeros of f(x) = x> — 5y = 12.

“Solution  You probably won't have much luck trying to factor this. However, from

SECTION Q.4 -+ Palynomials and Rational Functions 15
Unfortunately, factoring is not always so ca’sy."Ot' course, for the quadratic equation
3 - ‘
ax +bx+e=0.

(for a # 0), the solution(s) are given by the Farﬁiliar qumlraﬁc formula;

-—b + \/bj — 4ac
24 :

EXAMPLE 1.2 Fmdmg ?’eros Usmg the Quadrattc Formuta

the quadratic formula, we have

9 E (1Y) S5 JETH L5V
- 2:1 2 2

So, the two solutions are gwcn by v =2 3+ "ﬁ 2 0,772 and x = ; ‘/73 —1.772.
{No wonder you couldn’t factor the po]yuomml') S S

Finding zeros of polynomials of degree higher than 2 and other functions is usually
trickier and is sometimes impossible. At the least, you can always find an approximation of
any zero(s) by using a graph (o zoom in closer to the point(s) where the graph crosses the
x-axis, as we'll illustrate shortly, A more basic question, though, is (o determine kow many
zeros a given function has. In general, there is no way to answer this question without the
use of calculus. For the case of polynomials, however, Theorem 1.3 (a consequence of the
Fundamental Theorem of Algebra) provides a clue.

H{Ltki M‘ri t,.

A polynomial of dtgtee n has af most n dislmu ZE108.

Notice that Theorem 1.3 does not say how many zeros a given polynomial has, but
rather, that the maxinuon naimber of distinet (i.c., different) Zeros is ihe same as (he degree.
A polynomial of degree # may have anywhere from 0 to a distinct real zeros. However,
polynomials of odd degree must have af leust one real zero. For instance, for the case of a
cubic polynomial, we-have onc of the three pObSIblhEle‘s 111u‘;uatcd in Figures 0.23a, 0.23b
and 0.23¢ on the following page.

Tn these three figures, we show the graphs of cubic polynomm]s with 1, 2 and 3 distinet,
real zeros, respectively, These are the graphs of the functions

flx) = xt — 2,1-2 3= (¢ + D~ 3x 1),
g =x =t v L= (v 4 B = 12
and ]l(l)ﬁ\ —3x% \+3—(t+| v = Dx = 3),

respectively. Note that you-can see from the fdumed iorm where the zeros are (and how

‘many thére are).
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/A

Xy

FIGURE 0,23a

One zero

0.2

FIGURE 0.24a
y=xP - =242

s

—141 © —139

» X

g

o~
-~

FIGURE 0.24b
Zoomed in on zero near
y=-—1.4

FIGURE 0.24c
Zoomed in on zero near
x=14

: N/
/.r, X3 . .{2\__, /.t;

FIGURE 0.23b

- Two zeros

FIGURE 0.23¢
Three zeros

Theorem 1.4 provides an important connection between factors and zeros of polyno-
mials. o

THEOREM 1.4 (Factor Theorem) o
For any polynomial f, f{g) =0 if and only if (x —~a}isa facior of f(x).

HIAMPL
Find the zeros of f(x) = &’ —x* ~ 2x +2.

2 Findiﬁg the Zeros of a-C-u_bis_:. Po_lynémial

sSolution By calculating f(1), you can see that one zero of this function is x = 1, but
how many other zeros are there? A graph of the function (see Figure 0.24a) shows that
there are two other zeros of £, one near x = —L1.5 and one near x = 1.5. You can find
these zeros more precisely by using your graphing calculator or computer algebra
system to zoom in on ihe locations of these zeros (as shown in Figures 0.24b and 0.24c¢).
From these zoomed graphs it is clear that the two remaining zeros of f* are near

x = 141 and x = —1,41. You'can make these estimales more precise by zooming in
even more closely. Most graphing caleulators and computer algebra systems can also
find approximate zeros, using a built-in “solve” program. In Chapter 3, we present a
versatile method (called Newton's method) for obtaining accurate approximations to
zeros. The only way to find the exact solutions is to factor the expression (using cither
long division or synthetic division). Here, we have

fRO=x = W4 2= D=2 = (1 — D — V2 + V),

from which you can sce that the zeros are x = 1, x = v2andy = -2, w_.

Recall that to find the points of intersection of two curves defined by y = f(x} and
y = g{x), weset f(x) = g{x) o find the x-coordinates of any points of intersection.

£ AMPLE 1,23 Finding the Intersections of a Line and a Parabola

Solution A sketch of the two curves (see Figure 0.25) shows that there are two

|

Find the points of intersection of the parabola y = x*— x - 5andthe lincy = x + 3. 3
: N H

1

1

intersections, one near x = -2 and the other near ¥ = 4, To determine these precisely, |
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v we set the two functions equal and solve for x:

e This says that the solutions are exactly v = —2 und x = 4. We compute the
> i, ::'Z 1 ; v 4 f é »x  corresponding y-values from the equation of the line y = x .+ 3 (or the equation of
el the parabola). The points of intersection are then (—2, 1) and (4, 7). Notice that these
TS _ are consistent with the intersections seen in Figure 0.25. 8. ... .. -

FIGURE 0.25

y=x+3amdy=x—x -5 section 0.2.

Gt (D
@)

X) WRITING EXERCISES

1. Tt the slope of the line passing through poinis A and B equals
the slope of the line passing througi points B and C, explain
why the points A, B and C are colinear,

2. If a graph fails the vertical line fest, it is not the graph of u
function. Explain this result in terms of the definition of a
function.

3. You shoutd not automatically write the equation of a line in
slope-intercept form. Compare the following Forms of the same
ling: y=72.4x — 1.8+ 04 and y=2.4x —3.92, Given
x = 1.8, which equation would you rather use to compute y?
How about if you are given x == 07 For x = &, is there any ad-
vantage to one equation over the other? Can you quickly read
off the slope from cither equation? Explain why neither form
of the equation is “better”

4, To understand Definition 1.1, you must believe that Jx |= —x
fornegative 1’s. Using ¥ = —3 asan example, explain in words
why multiplying x by —1 produces the same result as taking
the absolute value of x.

In exercisés i-4, determine if the points are colinear.
1. (2, 1),(0,2), (4,0)- 2.3, 1D),4,8,(5,8
34, 10,06,2,01,3) 4, (1,24¢2,5, (4, 8)
In exercises 5<10, find. the slope of the line through the given
points. '
5 (1,2),3,06)
7. (3, -6),{1, -1}
9, (0.3, —1.4),(-1.1, -0.4)

6. (1,2),(3,3)
8. (1, -2), (-1, -3
10, (1.2,2.1), (3.1,2.4)

Subtracting (x + 3) from both sides leaves us with _

0=x2=2x =8 = (v~ 4)(x +2),

SECTION 0.1 »+  Polynormnials and Raticnal Functions 17

e x—5=x+3.

. Unfortunately, you won’t always be able 10 solve ei]uations-exacliy; as we did in
examples 1.20-1.23. We explore some options for dealing with more difficult equations in

In excrcises L1-16, find a sccond point on the line with slope
m and point P, graph the line and find an equation of the
line. '

M.om=2P=(13

2, m=-2,P=(1,4

13 m=0P =11

14, m= %, P={21)
15, m=12,P =23 L1)

16. m=—4, P=(-21)

I exercises 17-22, determine if the lines ave parallel, perpen-
- dieutar, or neither. - ' :

1T oy =3~ DA 2and ¥ =3y +4) — |

18, y=2(x —3)+ land y = 4(x — 3} + |
19, 3= 2x + D land y = Hx = 2)+3
200 y=2x—land y = ~2x +2

21, y =3¢+ land y = *_%.\‘ +2

22, x++2y="land2x +4y =23

~ In exercises 23-26, find an equation of a line through the given

peint and (a) parallel to and (b) perpendicular to the given
line. _ -
23y =2+ D202 ) 24y =30 -2+ 1at(0,3)

25, y=2x+4iat(3, 1) 26, y = lat{0, -1}
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In exercises 27-30, find an equation of the line through the given

points and compute the y-coordinate of the point on the line cor-

responding to x = 4.

27, 7

r

28 Y

29, ¥

L 4
-

0.5 1.0 L5 2.0

30. , ¥

2.0+

0-18

In exercises 31-34, use the-vertical line test to determine whether
the cuive is the graph of a function.

31. ¥
107 /
st /
/
TSN ER S
-3 -2/ 7203
‘:‘
;-5
/ ~10+ .
32, ¥
4
w)
5..
i -2 Z —
e —Ll-—f—i—!‘—b\
_'_5..
~10-
33, ¥
E 3
6,;
.\\\.‘V/
. --j.
2...
fr—t—t ettt
-3 -2 -I b2 3
M, Y
A
Iﬂﬁ/" 4\\‘\\
[ 105 '
1\,
t = ]%
05 1 15

=~
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In exercises 35—40, identify the gn’en function as polynomial,
rational, both or neither,

as. f(.\'):.x" — 4y + 1
x4y -1

2 —1
= 18, P e B
T+ . W =—5

39, ) : Vx4 40 fR) =25 -2 -6

36 f(x)=3—2x +"

In exeréiées £1-46, find !he_(lomain of the function.
41, f(x)=Vx+2 42, f(x)=V2x+1
43, flxy=vx—1 44, ()= Vx2—4

. 4 . dy
48, f(\) = 21 40, j(.\') = ‘m

In exercises 47-50, find the indicated function values,

W[ = X ), fQ), 13, 7072
a8 jey =T o) e, e, sam)

9. 700 = VT
S0. 7= 5 JA1) £10), F0100), 70/

O, £, -1, [1/2)

In e\emses 51-54, a- brief descuptmn is given of a physi-
eal situntion. I‘m lhe indicated variable, state a reasonable
domain,

51. A parking deck is to be built; v = width of deck (in feet).

52. A parking deck is to be built on a 200°-by-200" lot; x = width
of deck (in feet).

53. A new candy bur is to be sold; x = number of candy bars sold
in the first month, :

54, A new candy bar is to be sold; x = cost of candy bar (in cents).

In exercises 55-58, diseuss whether you think y would be a func-
tion of x. '
55, y = grade you get on an exam, ¥ = number of hours yau study

56, y = probability of getting lung cancer, x = number of
cigarettes smoked per day

57. y:= a person’s weight, x = number of mimutes exercising
per dny

58. y = speed at which an object falls, x = weight of object

59, Figure A shows the speed of a bicyclist as a function of time.
For the portions of this graph that are flat, what is happening
to the bicyclist’s speed? What is happening to the bicyclist’s
speed when the graph goes up? down? Identify the portions of
the graph that correspond to the bicyclist going uphill; do\\ n-
hill.

3 f)=x" 4+ -2

SECTION 0.t *> Polynomials and Rational Functions 9

Speed

A

* Time

FIGURE A
Bicycle speed

60. Figure 13 shows the population of & smal] country as a function
of tirme. During the time period shows, the country experienced
two influxes of immigrants, a war and u plague. Edentity these
important events.

Population
: F

e

L
T
.

- Titne

FIGUREB

Papulation

1n exercises 61-66, find all intercepts of the given graph.

6L y=x?—2x—8 - 62 y=xtdrtd

6} y=2'-8 64 y=xt -3 +3xr -1
24 ' o T —

65, y=" 6. y= 2!

x4 1 R Toxl—4

In exercises 6774, Tactor and/or use the quadratic formula to
find all zevos of the given function,

67. f{x) = —dx +3 68, fx)=x2+4x—12

69, ) =x1—dr+2 70, f(x) =200 +dx—1

L f)y=x"—3? 4 2 72, floy=x -2 —x +2

T fa)y=xt +at-dy—4

75. ‘The boiling puint of water (in degrees Fahrenheit) at ele-
vation /1 (in thousands of feet above sea level) is given by
B(h) = — 1.8 4 212, Find & such that water boils at 98.6°.
Why would this altitude be dangerous {0 humans?
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The spin rate of 4 golf bal hit with a 9 iron has been measured
at 9100 rpm for a 120-compression ball ard at 10,000 rpm
for a 60-compression ball. Most golfers use 90-compression
balls. If the spin rate is a lnear function of compression, find
the spin rate for & 90-compression ball. Professional golfers
often use 100-compression balls. Estimate the spin rate of a
100-compression bail.

. The chirping rate of a cricket depends on the temperature. A
species of tree cricket chirps E60 times per minute at 79°F and
100 times per minute at 64°F. Find a linear function relating
temperature 1o chirping rate.

When describing how to measure temperature by cournting
cricket chirps, most guides suggest that you count the numbaer
of chirps in a 15-second time period. Use exercise 77 to explain
why this is a convenient period of time.

. A person has played a computer game many times. The statis-
tics show that she has won 415 times and lost 120 times, and
the winning percentage is listed as 78%. How many limes in a

0-20

row must she win to raise the reported wmnmg, percenhge to
80%?

EXPLORATORY EXERCIS_ES

Suppose you have i machine that wi]lhropurtionally enlarge a
photograph. For example, it could enfarge a 4 x 6 photograph
to 8 x 12 by doubling the width and height. You could make
an § x 10 picture by cropping Linch off cach side. Explain
how you would enlurge ‘;3' x 5 picture to an 8 x 10, A friend
retums from Scatland \\'1l11 @ 3l « § picture showing the Loch
Ness monster in the cuter # “on th right. If you use your proce-

“duretomake an g x 10 enhrg,emuﬁ does Nessie make thecut?

Solve the equation |x—2]4+{x —3|=1. (Hint Tt's
an unusual solution, in that i’s more than just
a couple of numbers.) Then, solve the equation
/\+3 TRV oy LT P 6\/;—71_! (Hint: If you
make the correct substitution, you can use ) our solution to the
previous cqmtmn )

NI R R D]

(D f}f GRAPHING CALCULATORS AND COMPUTER
9, ALGEBRA SYSTEMS

~ The relationships between functions and their graphs arc central topics in calculus. Graphing
¥ ' calculators and user-friendly computer software allow you to ¢xplore these relationships for
' a much wider variety of functions than you could with pencil and paper alone, This section
presents a general framework for using technology Lo explore the gmphs of functions.
401 Recall that the graphs of linear functions are straight lines and the graphs of quadratic
polynomials are parabolas. One of the goals of this section is for you to become more
familiar with the graphs of other functions. The best way to become familiar is through

SR Y E i T S S expcricncc, by working example after example.

i" ‘Y f\M PLE 2.1 Generatlng a Calculator Graph

FIGURE 0.26a

y=3x2—1 Use your calculator or compulter to sketch a graph of f(x) = 3\

-y ' Sioi_ution You should get an initial graph that looks something like thm in Figure
- 0.26a. This is simply a parabola opening upward. A graph is ‘often used to search for
" important points, such as y-intercepts, y-intercepts or peaks and troughs. In this case,
we could see these points better if we zoom in, that is, display a smatler range of x- and
e e y-vatlues than the technology has initially chosen for us. The graph in Figure 0,.26b
i /" ‘ shows x-values from v = —2 to ¥ = 2 and y-values from y = —2t0 y = I0.
—— —»x  Youcan see more cleatly in Figure 0.26b that the parabola bottoms out roughly at
ERE the point (0, —1) and crosses the x-axis at approximately x = —0.5 and v = 0.5. You
_ canmake this more precise by doing some algebra, Recall that an x-intercept is a point
FIGURE 0.26b -  wherey = Oor f(x)= 0. Solving 3x? — 1 = 0 gives 3% = Lorx? = 1. 5o that
y=3 o1 - o :I:\/g ~hOSTI3S. B o




20 CHAPTER O :: Preliminaries T 020
76. The spin rate of a golf ball hit with a 9 iron has been measured row must she win to raise the reported winning percentage to
at 9100 rpm for a t20-compression bakl and at 10,000 rpm 80%:7
for a 60-compression ball, Most golfers use 90-compression
balls, It the spin rate is a linear function of compression, find
the spin rate for a 90-compression ball. Professional golfers [ R
often use 100-compression balls. Estimate the spin rate of a é‘a EXPLORATQRY EXE‘RCISES
100-compression balk. . 1. Suppose you have a machine that will proportionally enlarge a
S - photograph, For example, it conld enlarge a 4 x 6 photograph
77, The thrp_mg mtg? of & Lf_lc}‘d dcp,e“ds on th? temperat:l’;re. A to 8 » 12 by doubling the width and height. You could make
species of tree cricket chitps 160 times per minute at 79°F and an § x 10 picture by cropping 1 inch off each side. Explain
100 times per minute at 64°T: Find a linear function relating how you would enlarge ¢ 435 xS picture toan 8 x 10. Afriend
temperature to chirping rate. - reteens from Scotland wnth a 31 x § picture showing the Loch
. : . N t th 17 ﬂ ht. If you use y -
78. When degeribing how 10 measure temperature by counting dL?risiilr(:]:kEr\t:B ;;)(L)ll;rlhr Oélru;:l(gjou Ni(:sm I; ?:’:3::53
cricket chirps,.most guides suggest that you count the number e & h
of chirps ina | 5-second time period. Use exercise 77 to explain 2. Solve the equation jx 2| +lx—3=1. (Hiat: It's
why this is a convenient period of time. an ustusual  solution, iq 7 that it's  more :hu._n just
‘ ) a couple of numbers) Then, :olvc the  eguation
79. A persan has played a computer game many times, The statis- Vi+3-— 4J\ T+ Vx 8- 64/x — 1 = L. (Hint: If you

tics show that she has won 415 times and lost 120 times, and
the wmmng percentage is listed as 78%. How many times in a

make the correct substitution, you can use your sofution to the

previous equation.)

T A e el e 5 = = e ST e G TR L T DD A L

GRAPHING CALCULATORS AND COMPUTER
ALGEBRA SYSTEMS

The relationships between functions and their graphs are central topics in cateulus, Graphing
yo calculators and user-friendly computer software allow you to explore these relationships for
_ amuch wider vaticty of functions than you could with pencif and paper alone. This section

presents a general framework for using technology 1o explore the graphs of functions.

.~ Recall that the graphs of linear functions are straight lines and the graphs of quadratic
polynomials  are parabolas. One of the goals of this section s for you to become more
Familiar with the graphs of other functions. The best way to beeome familiar is through
experience, by working examptle after example. : '

Generatlng a Calculator Gr aph

Y AMPLE 2.1

FIGURE 0.26a
y= KR §

Use your calculator or computer (o sketch a graph of f(x) = 3x7 — 1.

¥ Solution  You should get an initial graph that looks somcthiing like that in Figure
0.26a. This is simply a parabola opening upward. A graph is often used to search for
important points, such as x-intercepts, y-intercepts or peaks and troughs. Tn this case,
we could sce these points better if we zoom in, that is, display a smaller range of x- and
. y-values than the technology has initially chosen for us. The graph in Figure 0.26b
1 shows x-values from x = —2 tox = 2 and y-values from y = —2to y = 10.

LN : You can see more clearly in Figure 0.26b that the parabola bottoms out roughly at
-2 - the point (0, —1) and crosses the. x-axis at approximately x = —0.5 and x = 0.5. You
- can make this more precise by doing somc algebra. Recall that an x- interccpt is a point

where y =0or f{x)=0. Soivmg 3t - 1 = 0 gives 3x2 = lorx? 3. %0 that

= i\ﬂ 2 4+0.57735. L T

i

FIGURE 0.26b
y=3x2—1
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To be precise, f{M) 15 a local

maximum ot f it there exist
numbers a and b with

a < M < bsuch that.
S = fla)forally
suchthate < x < b.

SECTION 0.2 =+ Graphing Calcutators and Computer Algebra Systems 21

Notice that in example 2.1, the graph suggested approximate values for the two
X-intercepts, but we necded the algebra to find the valués exactly. We then used those
values to obtain a view of the graph that highlighted the features that we wanted.

Before investigating other graphs, we should say a few words about what a computer-
or catculator-generated graph really is. Although we call them graphs, what the computer
actually does is light up some tiny screen elements catled pixels, IF the pixels are small
enough, the image appears to be a continuous curve or graph.

By graphing window, we mean the rectangle defined by the range of x- and y-values

'displayed. The graphing window can dramatically affect the look of a graph. For example,
-suppose the x’s un from x = —2 to x = 2. If the computér or calculator screen is wide
“cnough for 400 columns of pixels from left to right, then points will be displayed for

Xx=-2,v=-199,x=—1.98,.... Il there is an interesting feature of this function
located between v = — 1,99 and x = —1.98, you will not see it unless you zoom in some.

1In this case, zooming in would reduce the difference between adjacent x’s. Similarly, sup-

pose that the ¥’s run from y == § 1o y = 3 and that there are 600 rows of pixels from top to
bottom. Then, there will be pixels corresponding to y = 0, y = 0.005, y = 0.01,.... Now,
suppose that f(—2) = 0.004% and f(~1.99) = 0.0051. Before points are plotted, function
values are rounded to the nearest y-value, in this case 0.005. You won’t be able to see any
difference in the y-values of these points. If the actual difference is important, you will have
{0 zoom in some 1o see it '

(ECRE S EO

Most calculators aiid computer drawing 1)1clng,s use one of the tollowmg, two
. schemes for (lehmnb the gnphmg window for a given function.

.+ Tixed graphing wmdm\ Most calculators follow this method, Gmphs are ploued

i ina preselected range of x- and y-values, unless you specify otherwise. For
example, the Texas Instruments graphing caleulators’ default graphing window .
plots points in the rectangle defined by —10 < x < [0and —10 < y < 10 ‘

+ Automatic graphing window: Most computer drawing packages and some
calculators use this method. Graphs are plotted for a preselected range of y-values

¢ and the computer C‘llculale the range of y- valucs so that all of the calcu]ated points

will fit in the window.

Get to know how your calculator or compuler software operates, and use it
routinely as you progress through this course. You should always be able to reproduce
the computer-generated graphs used in this text by 'tdjnstmg yom ar 1phmg window
1pp10pr|alely

Graphs are drawn to provide visual displays of the significant features of a function.
What qualifies as significant will vary from problem to problem, but often the x- and
y-intercepts and poinis known as extrema are of interest. The function vatue f(M)is
called a local maximum of the function f if f(M) > f(x) for all X’ "nearby” x = M.

Smnlmly, the function value fGnyisalocal minimwm of the function £ if f(m) < f(x)
for all x’s “nearby” x = mi. A local extremum is a function value that is either a local

‘maximum or tocal minimum, Whenever pombl&,, you should preduce graphs that show all

intercepts and extrema.

IR IR it LU U I U S

X AME PLE 2.7 Sketchlng aGraph

Sketch a graph of f (1) =0 dx? ~ 5y — 1 showmg all mlerapts and exlrema

1
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Selition  Depending on your calculator or computer softwam, you may inllm]ly geta
gmph that looks like one of those in F]gme 027 0r 0. 27b :

¥
¥ 3
E
200+ / g '0\
i } f i +—p X
1o / 10 j M os o
e e ﬁ./_,_f_._,. x _lot
-4 =2 2 4 ‘
" . FIGURE 0.27a FIGURE 0.27b
0 y=xt 44t -5 - I y=x' 4 dx? - Sy 1

\ 204
\\I\ﬁw
4 -7 2 4

FIGURE 0.28
y=x 4457 -5 — 1

FIGURE 0.29a

Line,a; <@

/

s

y=aqr+a;

Ao,
yal

FIGURE 0.29b

Line,a; > 0

. of a graph that (reading lIeft to right) rises to a local maximum near x == —3, drops 1o &

Neither graph is completely satistactory, 'ﬂthough both should give you tlte idea

local minimum near x = |, and then rises again, To get a better graph, notice the scales
on the x- and y-axes, The graphing window for Figure 0.27ais the rectangle defined by
—5 < x < S5and ~6 < y < 203, The graphing windai\{ for Figure 0.27b is defined by the
rectangle —10 < x < 10 and -10 < y < 10. From either graph, it appears thal we need
to show y-values larger than 10, but not nearly as large.as 203, to see the local maximum.
Since all of the significant features appear (o lie between x = —6 and x = 6, one clioice
for a better window is —5 <x < Jand -6 < y < 30, as scen in Figure 0.28. There, you
can clearly see the three x-intercepts, the local maximum and the local minimum. 4 ..

The graph in example 2.2 was produced by a proccss of trial and error wnth thoughtfisl
corrections. You are unlikely to get a perfect picture on the first try, However, you can enlarge
the graphing window (i.e., zoom ont) il you need to see more, or shrink the graphing window
(i.e., zoom in) if the delails are hard to see. You should get comfortable enough with your
technology that this revision process is routine (and even fun!).

In the exercises, you will be asked o graph a variety of functions.and discuss the
shapés of the graphs of polynomials of ditferent degrees. Having some knowledge of the
general shapes will help you decide whether you have found an acceptable graph. To get you
started, we now summarize the different shapes of linear, quadratic and cubic polynomials.
Of course, the graphs of linear functions [ f(x) = «a1.x 4 «] are simply straight ]mes of
slope a,. Two possibilities are shown in Figures 0.29a and 0.29b.

The graphs of quadratic. polynomials [ f{x} = daX* - a,x -+ ap} are parabolas. The
parabola opens upward if @3 > Oand opens downwml ifuy < 0. We show typical parabolas
in Figures 0.30a and 0.30b. :

¥ - ¥

F ) . . . . F'S
. — 2

= ? 4 y=aawt Fax +a

¥ axy hapx toag g

BN

. 35 »
// / “ '
FIGURE 0.30a FIGURE 0.30b

Parabola, a3 > 0 Parabola, a; <0
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The graphs of cubic functions [f(x) = asx® + apx® + a)x + apl are soniewhat
S-shaped. Reading from left to right, the function begins negative and ends positive
if a3 > 0, and begins positive and ends negative if a3 < 0, as mdl(.'lll.d in Figures 0.31a
and 0.31b, respectwely

y N |
4
¥ = ¢13.\3 + azacZ +atoag . Cly= :1}\3 +ay? Faxta

\\\‘ / »X Ny . \ L

e

¥
A
¥y =ap® tap? Fapx+ag . FIGURE 0.;3[a : _ FIGURE O.?Ib
) ) Cabic: one max, min, gy > { - Cubic: one max, min, a3 <'0
Inftection o
point : Some cubics have one local maximum and one local minimum; as do those in Figures
/ V4 0.31a and 0.31b. Many curves (including all cubics) have what’s called an inflection point,
e . where the curve changes its shape (from being bent upward, to bcmg bent downward, or
e
/ vice versa), as indicated in Figures 0.32a and 0:32b, :
/ i . You can already use your knowledge of the general shapes o[ certain illnCttOllS 1o see

‘ how to adjust the graphing window, as in example 2.3,
FIGURE 0.32a : '

Cubic: no max or min, @y > ¢

T T

v ' EMAMPLE 7.4 Sketchang the Graph of a Cub:c Po[ynomla!
A
Sketch a graph of the cubic polynomial f(y) = x* — 20x? ~x + 20.-
gl 2 -
yEaw bt Ear gy Your initial graph probabty looks like Figure 0.33a or (0.33b.
Inflection . ) . -
N point
\x\ ¥ ) . ¥
e Fy Fy
N | 10,4
* X } U T
‘ ) \ -4 T d
=200 A ’
FIGURE 0.32b RN — R
Cubic: no max or min, a3 < 0 ‘ —4004 ~ -0 fS 1 5 10
-600 1 - 1
FIGURE 0.33a ‘ _ . FIGURE 0.33b

f)=x% =205 - x +20 Sy =x"—20x7 —x +20°

However, you should recognize that neither of these graphs looks like a cubic; they look
more like parabolas. To see the S-shape behavior in the graph, we need to consider a
larger range of x-values. To determine how much larger, we need some of the concepts
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T —800 kY /
\"\...

4 —i200

FIGURE 0.33¢
flx) = x* ~ 2027 — x 420

—104 \'
—20+

FIGURE 0.35

x—1

r= x =12
y
»
104
5,_

R b x
—4 48

.—5_
_lO«,

FIGURE 0,36
Vertical asymptote

of calculus. For the moment, we use trial and error, untii the graph resembles the shape
of a cubic. You should recognize the characleristic shape of a cubic in Figure 0.33c.
Although we now see more of the big picture (often referred to as the global behavior
of the function), we have lost some of the details (such.as the x-intercepts), which we
could clearly see in Figures 0.33a and 0.33h (often referred to as the tocal behavior of
thetunction)., &____ .. . . .

Rational functions have some propertics not found in po!ynommlx as we see in
cxamples 2.4, 2.5 and 2. 6

Sketch;ng the Graph ofa Ratloml FLH;Ctl-On '

r—1 : '
Sketch a graph of f(x) = 5 aind (te-scribc the bcha’vior_ol' lhe graph near x = 2.
X = .

Selution  Your initial graph should look something like Figure 0.34a or 0.34b. From
either graph, it should be clear (that something unusual is happening near x = 2.
Zooming in closer to v = 2 should yield a graph like that in Figure 0.35.

A &
le+08 - 104
Se+07+ 51 k
— brx fr oy R
—4 q o« “0. =5 [N s
—5e+07 1 - T s
—le+08] - S —10--.!
FIGURE 0.34a ‘ ~~ FIGURE 0.34b
‘_'..1‘—1 o ‘ﬁ_\‘-—l
YTIT YT 2

In Figure 0.35, it appears that as v increascs up io 2, the function values get more
and more negative, while as x decreases down to 2, the function values get more and
more positive. This is also observed in the following table of function values,

L8 -4 2.2 6

19 -9 210 |1
199 |99 2.01 to1
1999 | —999 2.001 FOO01
1.9999 1 —9999 20001 { 10,00

Note that at + = 2, F(x)1s undefined. However, as x approaches 2 from the lef, the
graph veers down sharply. In this case, we say that f{x) tends to —o0. Likewise, as ¥
approaches 2 from the right, the graph rises sharply. Here, we say that’ f(x) tends to 0o
and there is a vertical asymptole at x. = 2. (We'll define this more carefully in Chap-

ter 1.} It is common to draw a vertical dashed line at x = 2 o indicate {h]s (see Fagurc
0.36). Since f(2) is undefined, there is no point plotted atx = P




0.25
¥
b s
e —10 20
y

FIGURE 0.38

x—1

= x2+4

Solution  Note that the denominator factors as

neither x-value makes the numerator (x — 1) equal to zero, there are vertical asymptotes

SEC.TION 0.2 ¢ Graphing Calculators and Compiter Algebra Systemsr 25

Many rationat functions have vertical asymptotes, Notice that there is no point ptotted
on the vertical asymptote since the function is undefined at such an x-value (duc to the
division by zero when that value of x is substituted in). Given a rational function, you
can locate possible vertical asymptotes by finding where the denominator is zero. It turns
out that if the numerator s not zero at that point, there is a vertical asymplote at that
point.

2.5 A Graph W|th Severa! Vertlcal Asymptotes

TR

“Xﬁ.i\’f’! £

x—1
2 _Sv+6

Find all vertical asymptotes for f (.\') =

v S b6 (- 20 — 3),
so that the only possible locations for vertical asymptotes are x = 2 and x = 3. Since

atboth x = 2 and x = 3. A computer-gencrated giaph gives litile indication of how the
function behaves near the asymptotes. (See Figure 0.37 and note the scale on the
y-axis.)

y
F 3 ¥
2e+08+ t
£
le+08 st SR
- i ' N
: ‘ e s e T SR
1 4 O '
—1e+08+ i
=T L
—2e+08+ _ A%
TSR R ¢
—3e+08 T . :
FIGURE 0.37a o FIGURE 0.37b .
x-1 y—1
y= [ — Sy = e

=5 +6 . Tyt 5v+6

We can improve the graph by zooming in in both the x- and, y-directions.
Figure 0.37b shows a graph of the same function using the graphing window defined by
the rectangle —1 < x < Sand —13 'y < 7. This gmph clearly shows the vertical -
asymptotesat x = 2and x =3. B e

As we see in example 2.6, not all rational functions hfwe ver mal asymploles.

e g e A T

g }{AMPE E );Js A Ratlonal Function with No Vertical Asymptotes

2 + 4 ’

Selution  Nofice that x2 4+ 4 = 0 has no (real) sojutions, since x? + 4 > 0 for all

real numbers, x. So, there are no vertical asympitotes, The graph in Figure 0.38 is
consistent with this observation. ... . e e e e e

Find all vertical asymptotes of .
x
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Graphs are useful for finding approximate solutions of (hfﬁulit equauans, as we seg in

examples 2.7 and 2.8.
‘y T GO,V LIRS - _. —— ___. . . e e e e . e e e e —
. CAMPLE Finding Zeros Approximately
12+ .
/ Find approximate sohitions of the equation x> = /x + 3.
£ ’1 " .
gl Solutton  You could rewrite this equation as x2 — /x + 3 = 0 and then look for zeros

in the graph of f(x} = x? — /¥ + 3, seen in Figure 0.39a. Note that two zeros are

clearly indicated: one near ﬁl the other near 1.5, However, since yon know very little

of the nature of the function % — /X J 3, you cannot say whether or not there.are any

T other zeros, ones that don’t show up in the window seen in Figure 0.39a. On the other

AN N 2 > hand, if you graph the two funclions on either side of the equation on the same set of
4= - axes; as in Figure 0.39b, you can clearly sec two points whiere the graphs intersect

’ (corresponding to the two zeros seen in Figure 0.39q). Further, since you know the

FIGURE 0.392a gcncri_il shapes: of bﬁ)th of _lhf: graphs, you can infer t‘rom l‘?lg.'_,ml'c (.39 11].&11_‘ll1ere_ are no
y= i~ V3 other intersections (i.e., there are no other zeros of f). This is important information that
’ ' you cannot obtain from Figure 0.39a. Now that you know how many selutions there are,
' _ ‘ou need to estimate their values. One method is to zoom in on the zeros graphically. We
) ) grap ¥
t+ . leave it as an exercise to verify that the zeros are approximately v = ld and x = — 1.2,
10+ If your calculator or computer algebra system has a solve command, you can use it to

qu:ckly obtain an accurate upproximation. In this case, we get v & 1.452626878 and

5T ~ —1.164035140. e
61 / :
When using the solve command on your calculator or computer algebra systém, be sure
4T / to check that the solutions make sense. If the results don’t imatch what you’ve seen in your
2 [~ preliminary sketches and zooms, beware! Even high-tech equation solveis make mistakes
. occasionally.
i \ /1 bbbk ’
-4 -2 2 4
FIGURE 0.39b EXAMPLE 2. [ Findlng Intersections by Caiculator An Over5|ght
y=xlandy =¥ +3 Find all points of intersection of the graphs of y = Jeosxandy =2 —x.
y Solution Notice that the intersections correspond to solutions of the equation’
$ - © 2c¢osx = 2 - x. Using the solve command on the T1-92 graphing calculator, we found
aer - oo - intersections at x 2 3.69815 and v = 0. So, what's the'problem? A sketch of the graphs
\“ . of y =2 — x and y =2 cos x (we discuss this tunchon in the next section) CIE‘I[’])’ ‘
Toay, ' shows three intersections (see Figure 0.40).
. / T N‘ s The middle solution, x = 1,10914, was somehow pdsscd over by the c‘\lcul.itor S
-1 ] 1NN s ¥ % solve routine. The lesson here is to use graphical evidence Lo support your solutions,
ol \.5‘};\/ especiatly when using software anctfor functions with which you are less than

completely Familion, & ..o Ll e

FIGURE 0,40 _ _ :

y=2cosxand y =2-x You need to look skeptically at the answers provided by your calculator’s solver pro-
gram. While such solvers provide a quick means of approximating solutions of equations,
these programs will sometimes réturn incorrect answers, as we illustrate with example 2.9,
S0, how do you know if your solver is giving you an accurale answer or one thal's in-
correct? The only answer to this is that you must carelully test your calculator’s so-
lution, by separately mlaulatmg ‘both sides of the c,qu'mon (by hand) at the calculated
solution.
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‘ E}{AM PLE 2.6 Solvmg an Eqmtlon by Calculator An Erroneous Answer

|

o
Use your calculator’s solver progmm to solve the cqumon x + =,
RY

Yolutiens  Certainly, vou don’t need a cqluulaiol to solve this ethon but co:151der
_what happens when you use one. Most calculators report a solution that is very close to
zero, while others report that the solution is ¥ = 0. Not onty are these answers
incorrect, but the given equation has no solution, as follows, First, nolice that the
‘equation makes sense only when x # 0. Subtraciing — from both sides of the equation

leaves us with v == 0, which can’t possibly be a'solution, since it does not satisfy the
original equation Naotice further that, if your calculator returns the approximate sofution
¥ =1 x 1077 and you use your calculator (o compute the values on both sides of the
equation, the calculator will compute ‘

] R
x + =k 10 x 107,

which it approximates as 1 x 107 = l_, since c‘.'l'lcu.lutc;rs carry only a finite number of
digits. In other words, although :

Ex 107740 x 107 # 1 x 107,
your calculator treats these numbers as the same and so incorrectly reports that the

equation is satisficd, The moral of this story is to be an intelligent user oftcc]mology
and don’t blindly accept evcrytilmg a caleuator tells you. H.o.__

We wanit to emphasize again that graphing should be'the first step inthe equation-solving
process. A good graph will show you how many solutions to expect; as well as give their
approximate locations, Whenever possible, you should {actor or use the quadratic formula
to get exact solutions: When this is impossible, approximate the solutions by zooming in
on them graphically or by using your calculator’s solve command. Ahways Comp'irc your
results to a graph to see if there's anything you've misscd.

) WRITING EXERCISES

. . 3 1
1. Explain why there is a significant difference among Figures . 4. Examine the graph of y = with each of the following
0.33a, 0.33b and 0.33c. : graphing windows: (a)—10 < 1 < 10, (b} — 1000 < x < 1000.
2. In Figure 0.36, the graph approaches the lower portion of the ’ Explain why the graph in {b) doesn’t show the details that the

vertical asymptote from the left, whereas the graph approaches
the upper portion of the vertical asymptote from the right. Use
the table of function values found in example 2.4 to explain how
to determine whether a graph approaches a vertical asympltote
by dropping down or rising up.

-graph in {a) does,

Sl In exercises 1-30, sketch o graph of the function showing atl
extrema, infercepts and asympiotes.

: PR N T ) — T g2
3. In the text, we discussed the difference between graphing Loj) =1 2 fl)=3-x
with a fixed window versus an automatic window, Discuss the ; - ) :
. : . 3 fly=a 42 -8 4. f{x) =x? —20x + 11
advantages and disadvantages of each, (Hint: Consider the case f(l.) 1 + .1 I -f(l) t vt
of a first graph of a function you know nathing about and the 5 fa)=x 41 T 6. flxy=10—x°

case of hoping to see the important details of a graph for which : _
you know the general shape.) - Ty =x1+2x -1 (8, f(x)= -3t
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9, flv)=x"—~1 . 16, f(xy=2 —x° ,-}——3 In exercises 49-56, determine {he number of (real) solutions.
1 fa)y=x 425 - | 12, f(r)=x' — 6x2 +3 Selve for the intersection points exactly if possible and estimate
Ay . ’ AT ’ the points if necessary. )
13, fx)=x%4+2 4, fo)=12-4° . : i !
! 49, Jr—-t=x*-1 0. V¥l+4=21242.
15, f(x)= o8 42001 16 flv) =475t 2xt 1 _
3 o ' 4 SLox? - 3a2=1-3x - §2, ¥4 1= —3x% -3
17. f(o= = 18, fr)= ““_{:‘2‘ 7\ X | L3 X -4 X X
x— X : .
2 1y — 9y : Y3 g
. 1) 3 2. o) 4x 83 (= 1P =2v+ 1 M. 0+ D =22
. )= : . Ay = ' .
-1 2 55, cosx =x?—1 . 56, siny =241
) w? 9 ) 4y? ’
2l flx) = PR » )= Y12 HI“ exercises 57-62, use a graphing caleulator or computer
2 6 graphing utility to estimate all zeros.
2. W)= 5y U [ =55 ST ()=~ At
25, f(x) = 3 26, f(x) = _5 58, fl)=xt—dxt42 -
| xP 4 : x249 T
x+2 . x—1 59, fly=x'-3 -+
27, fl) = ——— 28. J(x)= —— : :
fl) i+ 6 Flx) R . .
GO f)=xt—2v 41
2. 1) = 0. ()= | |
R . fl) = —
NETEW Va2 41 61. f(\)— =Tt = 15 10\7 1410
i o B A__.-J_ L
In exercises 31-38, (ind all vertical asymptotes. 62. f() =2 da® 07 -8y =2 .
‘ 3y ' T +4 {}B 63.-Graph y =.+? in the graphing window --10 < x <10,
3L f) = =4 32. floy= 2 _g —=y=10 without drawing the x- and y-axes. Adjust
e 42 the graphing window for 'y = 2(x = ¥ + 3 so that (with-
B f)= 5—— 3d, f(‘) = = out the axes showing) the gmph fooks identical to that of
xT+3x—10 -2y —15 =2
y=X
dx 3 ; . ) . .
35, flx)= ﬁ 36, f(x)= -J-_;T @64. Graph y = x* in the graphing window -—-10 <x 210,
¥ ) =9 - =10 < y < 10. Separately graph y = x* with the same graph-
parately
PN ing window. Compure and contrast the graphs, Then graph the
M SO =t 3. S | B e
R B TV B, I RN 1 two functions on the same axes and cacetully examine the dif-

ﬂiﬂ In exercises 3942, a standard graphing window will not reveal

all of the important details of the graph. Adjust the graphing
window to find the missing details,

39, flxy=1x7 - oy

40, flxy=ux
41, f{x)=x 144 — 12

42, flxy=1a% = Iyt fd o Ja? - 6y

1t 4+ 50 =2

ﬂi—;ﬂ In exercises 43-48, adjust the graphing windew fo identily all
vertical asympotes.

ferences in the intervals —] <x < land x > 1. |

65. .In this exercise, you will find an equation describing all points
equidistant from the v-uxis and the point (0, 2). First, see if
you can sketch a j)i::tllre of - what this curve ought to look
fike. For a point (\ \) that is on the curve, explain why
J¥E = /T F {3 — 2)7. Sejisare both sides of this equation and
solve for y. 1dentify lllt, curve, .

Find an equation describing ail points cdatidistant from the
x-axis and (1, 4) (see exercise 63).

66

@ EXPLORATORY EXERCISES

3 44 ! 4 ) 3x2 E 1. Suppose that a graphing calcutator is set up with pixels cor-
3. fixy= r—1 A 5 fla) = 2 respondingto ¥ =0,0.1,0.2,0.3,...,2.0and y=0,0.1,0.2,
" 2 5 0.3,...,4.0. For the function f(x) == x*, compuie the indi-

ae X ~ e v TR 3 ive pi 1
46, f(x) = 47 f(\) = 48, flx) = cated function values and round off to give pixel coordinates
"'_+4 \/- Vxidx [e.g., the point (1.19, 1.4161) has pixel coordinates (1.2, LA},
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() £10.4), {b) f{0.39), (c} SLLIT), (d) F(1.20), {e} £(1.8),
() £(1.81). Repeat (¢)-(d) if the graphing window is zoomed in
sothaty = 1.00, 1.0, ..., 1.20and y = L.30, 1L.31, ..., L.50.
Repeat (e)-(f) if the graphing window is zoomed in so that
x==1.800, 1.801,..., 1.820and y = 3.200, 3.205, .. ., 3.300.
f% 2. Graph y = 22—, y =x2 43—,y =420,

y=al— v 1,y =x%—2x — 1 and other functions of the
form y = x? - cx ~ 1, Describe the eﬂect(s)'lchangcmchas
on the gn;)h

) SECTION 0.3 »+ Inverse Furictions 29

H 3. Figures 0.31 and 0.32 provide a cutalog of the possible
B types of graphs of cubic polynomials. In this exercise, you
will compile a catalog of ‘graphs of fourth-order polyno-
mials (e, ¥ = a3 + &0 +ex? +dy + ). Start by using
your calculater ur computer to skerch graphs with different
values of a, b, ¢, d and e, Try y = x* y= 20, ¥ = 2t
y=try = ety = xt -0y =0t 4 a

y=al—x? p=at =l y = 2 a, y=xf —xandsoon.

Try to determing what ettect each constant has.

T P AT, T S VTS S0 it R

B

INVERSE FUNCTIONS

(E2>'e;§

The notion of an inverse relationship is basic: to many areas of science. The nunber of
common inverse problems is immense. As onky one example, take the case of the electro-
cardiogram (EKG). In an EKG, technicians connect a series of electrodes (o a patient’s chest
and use measurements of electrical activity on the surface of the body to infer something
about the electricat activity on the surface of the heart. This is referred to as an inverse prob-
lem, since physicians are atlempting to determine what inputs (i.e., the electrical activity
on the surface of the heart) cause an observed (m!pui (the measured electrical activity on

FIGURE 0.41

g(¥) = fLx) the surface of the chest).

The mathematical notion of inverse is much the same as that just described. Given an
. output (in this case, a value in the range of a given function), we wish to find the input (the
" value in the domain) that produced that output, That is, given a y € Range{f}, findthe x ¢
e Domain{ [} for which y = f(x). {Sce the illustra!ion of the inverse function g shown in

6+ /ly=x' Figure 0.41)
For instance, suppose that f{x) = x and y =8, Can you find am ¥ such that x¥ = §7
T ‘That is, can you find the x-value corresponding 10 v. = 82 (See Flgum 0.42.) Of course, the
24 _solution of this particular equation is ¥ = /8 = 2. In general, if =y, then X o= f In

. A . light of this, we say that the cube voot function is the infverse of f(x) = x*
/‘ i 3 :
-4 » _— B o
/ al e }{AM PLE 3 ! Two Functions That Reverse the Action of Each Other

If f{x) = x and g{x) = x'/3, show that
"FIGURE 0.42
Finding the x-value corresponding

toy=38

! (é(-\‘))=.1‘ and  g( f.("')j:—v.

for all x.

Solution  For all real numbers x,.wc have
Fa) = S0 = (P =
and D = g = DB —ds g ST

Notice in example 3.1 that the action of f un{ioes the acuon of g and vice versa. We
take this as the definition of an inverse function, (Ag\m think of Figure 0.41.)
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(3} f(0.4), (b) £(0.39), (e} S(1.IT), (&) F(L2O), (e} f(L.8B),
(f) £(1.81). Repeat {c)}-(d) if the graphing window is zoomed in
sothaty = 1.00, £.01,...,
Repeat {e){f) if the graphing window is zoomed in so that

1.20andy = 1.30, 131, ..., 1.50.

SECTIQN 0.3 »* Inverse Functions 29

1) 3. Figures 0.31 and 032 provide a- calalog of the possible

types of graphs of cubic polynomials. In this exercise, you
will compile a catalog of graphs of fourth-order polyno-
mials {i.e.,

¥ =eaxt + bx* +ox? 4+ di + e). Start-by. using

x=1.800, 1.80t, ..., 1.820and y = 3.200, 3.205, ..., 3.300. your calculator or computer to sketch' graphs with different

@ 2. Graph y = x* - Ly=x +x—-Ly=a42r -1 values of a, b,c, d and ¢ 'l’ry y = 1 Y= 2\“, y o= —2.1'4.
T y=a—x -1,y =x"—2x— 1 and other functions of the y=a" 4y =t 2, — 24, y= a4 x?

form y = x? 4 ex — 1. Describe the effect(s) a change in ¢ has y=at—al y=at 2, )' =t +X, y =x*—xandsoon.

on the graph.

Try to determine what effect each constant has.
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@ .5 INVERSE FUNCTIONS

FIGURE 0.4

glxy= /')
¥
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FIGURE 0.42
Finding the x-value corresponding
toy =28

The notion of an inverse relationship is basic to many areas of science. The number of
common inverse problems is immense. As only one example, take the casc of the electro-
cardiogram {EKG). Tn an EKG, technicians connect a series of electrodes to apatient’s chest
and use measurements of clectrical activity on the surface of the body to infer something
about the electrical activity on the surface of the heart. This is referred o0 as an inverse prob-
lem, since physicians are attempting to determine what inputs (i.e,, the electrical activity

- on the surface of the heart) cause an observed ompm (the meastired etectuc'l[ activity on

the surface of the chest).

The mathematical notion of inverse is much thc same as tha just described. Given an
output (in this case, a value in the range of a given function), we wish o find the input (the
value in the domain) that produced that output, That is, given'a y € Range( [}, find the x €
Damain{ f} for which.y = f(x). (See the illustration of the inverse function ¢ shown in
Figure 0.41.) K

For instance, suppose that f(x) = +* and y = 8. Can you find an x such that % = 87
That is, can you find the x-value corresponding (o y = 87 (See Figure 0.42.) Of course, the
solution of this particular equation is x = +/8 = 2. Tn general, if x* = y, then x = ¥¥. In
light of this, we say that the cube root function is the inverse of f{x) = X

E“f_}(;{\?"i PLE 3.1 Two Functtons That Reverse the Actlon of Each Othel
If f(x) = x? and g{x) = r

, show that

Flga) =x and g(f(x)) =x;

for all x.
Sofutions  For all real numbers x, we have

Sy = fa") = @'Y =
and L g =g) = (.r_-‘)‘” =X

Notice in example 3.1 that the action of f undoes the action of g and vice versa. We

take this as the dcﬁmluon of an inverse function. (Again, thmk of Flgure 041) .
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Pay close attention to the : Assume that £ and g have dom‘lms A and B, respectively, and (hai Fletani is dehncd
notation, Notice that f~(x) forall x € B and g(f(v)) is defined forall x € A, If ‘ :

1 .
does not mean ~——. We write
fix) -

the reciprocal of £(x) as

flgtey =x, forally € B and
S(f(-\‘)): x, forallx 'e A,

1 -
o Lreort.
e we say (hat g is the inverse of f written g = f- ' Lqmv x]emly [ is the inverse of
L - )
sHf=g
Observe that many familiar functions have no inverse.
¥ S S }

EXEAMPLE 3.2 A Function with No Inverse

Show that f(x) = x2 has no inverse on the interval (—oo, 00).

~$—  Solution  Notice that f(d) = 16 and f(—4) = 16. That is, there are nwo v-values that

j - produce the same y-vatuc. So, i we were to try to defing an-inverse of f, how would we
define f~'(16)? Look at the graph of y = x? (sce Figure 0. 43) to sce whal the problem
is. Foreach y > 0, there are fwo v-values for which y = x%. Because of this, the
function does not have an MIVeIse. Fo.... .o e

‘For f(tj = x2, it is temptiig to jump to the conclusion thdtg(\) = /X is the inverse of
f(x). Notice that although f{g(x)) = {/XF = x forall x = 0 (ic., for all x in the domain

Pt L
2 4 of g(x}), it is mor generally true that g(f(l)) = +/x7 = x. In lact, this last equality holds
' only for x > 0. However, for f(x} = x? restr mted o tlu, dom’im x>0, we do have that

FIGURE 0.43 I *(1)""\/."

y = ".2

DEFINITION 3.2
A function f is called one- t(; -one when foy cvery v € Range{f}), (hcre is exactly one
X € Domam[ 1] tor Wthh y = f(\)

a

FIGURE 0.44a
fla)y= fib),fora #b

So, f does not pass the

Ay ’ o
-+ Observe that an equivalent definition of one-to-one is the following, A function f(x) :
! is one-to-one if and only if the equality f(a) = f{h).implies @ = b. This version of 5
the definition is often uscful for proofs involving one-to-one functions.
1 L ) . 3
b

It is helpful to think of the concept of one-lo-one in graphical terms. Notice that a
function f is one-to-one if and only if every horizontal line intefsects the graph in at most

horizontal line test and is not gne point. This is referred to as the horizontal line fest, We illustrate tlus in Figures 0.44a
one-to-one. ' and 0.44b. The following result should now ntake sensc. :
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FIGURE 0.44b
Every horizontal line intersects
the curve in at most one point.
So, f passes the horizontal
line test and is one-to-one.

104 /
20+
——t—t b x
I I i
/,20“
._.40_._

FIGURE 0.45
y=x'-5

/ o
7](“),,
FIGURE 0.46

y =10 -5

solve for x (i.e., solve for the input x that produced the observed output y). We have

ERAMPLE 3.5

SECTION 03 *« Inverse Functions 3

IHF‘@RE‘M § i

A fumlmn f has an inverse if and on]y 11 it is one- to-one.

This theorem simply says that every one-lo-one Iuncuon lm an inverse and every
function that has an inverse is onc-to-one. However, it says nothmg about how to find an

inverse. For very simple functions, we can find inverses by solving equations.

Fmdmg an inverse Functton

Find the inverse of fxy=a? s,

Golutios  Note that it is not entirely clear from the. grzt'ph'(sce Figure 0.45) whicther
f passes the horizontal line test. To find the inverse function; write y = f(x) and

y = - 3.,
Addi'ng 5 to both sides and taking the cube root gives us
O+ = 0H" =
So,x = f~l(y) = (¥ + 5)/3. Reversing the variables v and y gives us

ST =+ 0 S

EXAMPLE 3, 4 A Function That Is Not One to- One
Show that f(x) = 10 - x* does not have an inverse.

Sotution  You can see from a graph (see Figure 0.46) that f is not one-to-one; for
instance, f(1) = f(- ) = 9. Consequently, / does not have an inverse. B o e -

Most often, we cannot find a formula for an inverse function and must be satisfied with
simply knowing that the inverse function exists, Example 3.5 is lypical of this situation.

- Finding Values of an Inverse Function
Given that f(x) = x% 4823 4 x = 1 has an inverse, find- £ ~1(1) and f‘f(l'i)‘ .

Sotution  First, notice that from the graph shown in Figure 0.47 (on the following
page), the function looks like it might be ere-to-one, but how can we be certain of this?
{Remember that graphs can be deceptive!) Until we devclop some calculus, we will be
unable to verify this. Ideally, we would show that f has an inverse by finding a formula
for 71, as in example 3.3. However, in this case, we must solve the equation

y = st x 1
for x. Think about this for a moment: you should realize that we can’t solve for.x in

terms of y here. We need to assume that the inverse exists, as llldlCdtC(l in the
1mtluct10ns
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FIGURE 0.47
y=x"+ 8 px ]

(b, a) Ve

g (a, b)

FIGURE 0.48
Reflection through y = x

0-32

Turning to the problem of finding f~!(1) and £~'(11), you might wonder if this is
possible, since we weré unable to find'a formula for £~'(x). While it's certainly true
that we have no such formula, you might observe that f(0) = 1, so that £1(1)y = 0. By
trial and error, you might also discover that f(1) = It andso, f™'(I1) =1 & _______ .}

In example 3.5, we examined a function that has an'inverse, although we could not find
that inverse algebraically. Even when we can’t find an inverse function explicitly, we can
say something gl'iplnullly Notice that if (¢, b) is a point on the graph of y = f(x) and f
has an inverse, £, then since

b= fla),

ST = @) =

we have that

" That is, (b, «) is a point on the graph of y = f~'(x). This ‘te]is us a great deal iabout the

inverse function. In particular, we can immediately obtain any number of points on the graph
of y = f~1(x), simply by inspection, Further, notice that the point (b, «) is the reflection -
of the point (a, ) through the line y = x (see Figure 0.48). Tt now follows that given the
graph of any one-to-one function, you cun draw the graph of its inverse simply by lcﬂeclmg
the entire graph through the line y = x.

In example 3.6, we illustrate the symmetry of a lunumn fmd its inverse.

s T R TR CR A IR

E E‘JAMPL% 3.6 The Graph of a Function and Its inve:se

Draw a graphof f{x) =x 3 and its inverse.

Solution  From example 3.1, the inverse of f(\) = x? s f' Ly = xI13, Noucc the
symmetry of their gr'a;)hs show in Figure 0.49. :

T y=a.2s
¥ 2
T
C= 2
’/ ¥ r
/-/

FIGURE 0.50
Graphs of f and f~!

FIGURE 0.49
y=xband y = x'#

Observe that we can use this symmetry principte to draw the graph of an inverse
function, even when we don’t have a formula for that function (see Figure 0.50).
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FIGURE 0.51
= f(x)and y =

FH)

Kim Rossmeo (1955~ 1)
‘A Canadian eriminologist wh
“developed the Criminal % 7 -/
Geographic Targeung algonthm -
‘that indicates the most probable
area of residence for serial
murderers, rapists and other
criminals. Rossmo served 21 years
with the Vancouver Police
Department. His mentors were
Professors Paul and Patricia
Brantingham of Simon Fraser .~
‘University,. The Brantinghams
developed Crime Pattern Theory,
‘which predicis crime locations :
from _where cnmtnals live, work R
-and p!ay Rossmo inverted their
“model and Used the crime sites to-
-determine v where the criminal -
most likely lives, The premiere
eplsode of the television drama
Numb3rs was based on Rossmo 5
work ’

Draw a graph of f{x)=x"+ 813 4+ & + ¥ and'its inverse.

- Despite this, we can draw a graph of f~

1If the desired hormone level is 30, what is the pmpCl dosngc"

SECTION 0.3 <+ laverse Functions 33

EHAMPLE 3. Drawmg the Graph of an Unknown Inverse Functcon

Solution  In example 3.5, we were unable to find a formula for the inverse function.

! with case. We simply take the graph of

v = f{x) seen in Figure 0.47 and reflect it across the line y = x, as shown in Figure
0.51. (When we introduce parametric equations in-section 9.1, we wxli sce a clever way
1o draw this graph with a graphing calculator, ) S S N

In example 3.8, we 'ip[.)])’ our theoretical km)w]cdg;e of inverse functions in-a medical
selting.

EXAM

}  Determining the Proper Dosage of a Drug

Suppose that the ir_ljeélion of a certain drug raiscs the level of a key hormone in the
body, Physicians want to determine the dosage ihat preduces a healthy hormone level,
Posages of 1, 2, 3 and 4 mg produce hormone levels of 12, 20, 40 and 76, respectively.

¥ ¥
Jl ry
g0+ S04
3 .
0+ 60+
401 @ 40T
a04 - 2 e : 201
& ’ @
t —t > ' g — ¥
1 ) 3 4 o 2 3 4.

" FIGURE 0.52b

_ Approximate curve

FIGURE 0.52a

Hormone data

Yolution A plot of the points (1, 12), (2, 20}, (3 40) und (4, 76) summarizes the data
(see Figure 0.52a). The problem is an inverse problem: given y = 30, what is x? Jt is
tempting to argue the following: since 30 is halfway between 20 and 40, the x- value
should be halfway between 2 and 3: x = 2.5. This method of solution is called linear
interpolation, since the point (¥, ¥} = (2.5, 30) lies on the line through the points
(2, 20) and (3, 40). However, this estimate does not take into account alt of the
information we have. The points in Figure 0.52a suggest a graph that is curving up. If
this is the case, v = 2.6 or x = 2.7 may be a better estimate of the required dosage. In
Figure 0.52b, we have sketched a smooth curve through the data points and indicated a
graphical solution of the problem. More advanced techiniques (e.g., pofynomial -
interpolation) have been developed by mathematicians to make the estimate of such
quantities as accurate as possible, & Lo e
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Q) WRITING EXERCISES

1. Explain in words (and a picture) why the following is true: if
Sfx) is increasing for all x, then f has an inverse. ’

2. Suppose the graph of a function passes the horizontal line test.
Explain why you know that the function has an inverse (defined
on the range of the fanction).

3, Radar works by bouncing a high-frequency electromagnetic
pulse off of a moving ubject, then measuring the disturbance
inthe pulse as it is bounced back. Explain why this is an inverse
problen by identifying the input and output,

4, Fach human disease has a set of symptoms associated with
it. Physicians attempt to solve an inverse problem: given the
symptoms, they try to identity the disease causing the symp-
toms. Explain why this is not a well-defined inverse problem
(i.e., logically it is not always possible to correctly identify

diseases from symptoms alone),

In exercises 14, show that flg{x}} == x and g(f{x)) = x for
all x: ‘ .

L fev) = 3% and glx) = '

2. fix) =4y and glv) = (i_\-)“’

. ) o= T
30 S =2 Florglx) = V=
l ! :2"‘ (r 0,5 # ~2)

4. flo= and g(x) =

1
_rl+2.

ﬂ'—‘c} In exercises 5--12, determine whether the function Is one-to-one,
If it is, find the inverse and graph both the funcfion and iis
nverse, ' ’

5 flx)y=a'-2
7. fo=x*~1
9, fi)=w*+2

1L f{x)=VaF+1

6. j'(.t) = +4

8. ()= +4
10, Sy =xt—-2x 1
12, )= Va2 +1

Fn exercises 13-18, assmiie that the function has an inverse,

Without solving for the inverse, find the indicated function -

values. -
B =2 A= @ D o) £
14, j'(.\‘):_t3+2.r+l, (a} f_l(]), (®) f_t(13}
15, f() =430 40 @ S ©) )
16, fxy=xS4dx -2, (@) f*lcg), ) £i3)

0-34

17 f(x) = a3 423 1+ 4, ‘(a) ff.'(4), ) ')
B, f()= VST Tl @ /G 0 S

In exercises 19-22, use the given graph to graph the inverse
function. .

19. ¥

20. ¥

21. y

3+
N
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22, : ¥
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i
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In exercises 23-26, use linear int.erpa!atinn (sec example 3.8) to
estimate f~'(#). Use the apparent curving of the graph to con-
Jjecture whether the estimate is too high or too low.

23. (1, 12),(2.20), (3, 26), (4, 30), b == 23

24, (1, 12), (2, 10),.(3, 6),(4,0),6=8 .

25, (1,12),(2.6), (3,23, 4,00, b =5

26. {1, 12), (2, 20), t3, 36), (4,50), b =32

In exeréises 27-36, use a graph (o detc%rmine whether the func-
tion is ene-to-one, If it is, graph-the inverse function,
2. flr)=x' -5 '

28, f(x)=x¥-3

29, f(x)=x"+2x — I

30, flxy=x" -2y —1

3 f)y=x' -3 -1

32, fy=x"+4ad -2

33 flv) = T

4
34, f(\)“_ +1
3. f0) =g |
ag. f(‘)ﬁ_L__

X244
Exercises 37-46 involve inverse functions on restricted domains,

37, Show that f{x) =¥ (x = 0) and g(x) = /¥ (x > 0) are in-
verse functions, Graph both functions.

38. Showthat fl)=x>—1{x = Qund glv)=Vx + 1{x =—1)

are inverse fuactions. Gmph both functions. .

39, Gmph Sy = x? for X < 0 and verify that it is one-to-one.
Find its inverse. Graph both tunctions.

SECTION 0.3. *+ Inverse Functions 35
40. Graph f(x) = x? + 2forx < Oand verify that itis one-to-one.
" Find its inverse. Gruph both funetions, .

41, Graph j{\) =(x --2)* and find an interval on which it is one-
to-one, Find the inverse of the function restrlcled 10 that inter-
val. Graph both functions, :

42, Graph j'(.\') =(x + 1? and find an interval on which it is one-
to-one, Find the inverse of the function restricted to that inter-
val. Graph both functions,

Graph f(v) = Vw? — 2% and find an’interval on which it is
one-to-one. Find the il_wcrse of the function restricted 1o that
interval. Graph both functions.

43

and find an interval on which itis one-to-

: X
44. Graph f{x) =
.
one. Find the inverse of the function restricted o timt interval,
Graph both functions.

- 45, Graph f(x) == sin.v and find.an interval on which it is one-to-
one. Find the inverse of the function restricted to that interval.
Graph both functions.

46. Graph f(v) = cosx and find an interval on which it is one-to-
- one. Find the inverse of the function eéstricted to that interval.
Graph both func!ions. :

ln exercises 47—-52 discuss “he[hen the function deseribed has
an inverse,

. 47, The income of a company varies with time,
48

“The }16153}1[ of a person varies with fime.

49
50

For a deopped ball, its height varies with time.

For a ball thrown upward, its height varies with time.

51. The shudow made by dn object depends on its twee-
dimensional shape. '

52. The number of calories burned depends on how fast a person
TS,

53. Suppaose that your boss mtorm\ youthat you have been awarded

" a 109 raise. The next week, your boss announces that due fo
circumstances beyond her control, all employees will have their
salaries cut by. 10%. Are you as well off now as you were two
weeks ago? Show that increasing by 10% and deereasing by
'10% are not inverse processes, Find the inverse for adding 10%.
(Hint: To add:10% to aquantity yowcan multiply lhe quantity
by L.10.) .

G@ EXPLORATORY EXERCISES

1. Find all values of k such tha.( flx)y= ._\'] + k.\‘-—i— I is one-to-
one. :

g

Find atl \'ltuu. of k such tlne Flo) =y + 222 +Lr —~1is
one-to-one.

g . o i o T DT

RTINS AT TR S S B et R P




36 CHAPTEROQ v+ Preliminaries 7 o ’ . 0-36

o) 4 TRIGONOMETRIC AND INVERSE
) TRIGONOMETRIC FUNCTIONS

FIGURE 0.54

Definition of sin ¢ and cos 8:

cosf =xandsin@ =y

Many phenomena encountered in your daily life involve way es. For instance, music is trans-
mitted from radio stations in the form of electromagnetic waves. Your radio receiver decodes
these electromagnetic waves and causes a thin membrane inside the speakers to vibrate,
which, in turn, creates pressure waves in the air. When these waves reach your ears, you hear
the music from yourradio (see Figure 0.53). Each of these wavesis periodic, meaning that the
basic shape of the wave is repeated over and over again. The mathematicai description of such
phehomena involves periodic functions, the most familiar of which are the trigonometric
functions. First, we remind you of a basic definition, '

FIGURE 0.53

Radio and sound waves.

FINI THOMN 4.1
A function [ is periodic of period T if o
ST = fY

for all x such that x and x + 7 are in the domain of. j The smallest such number
T > 0is called the fund.lmcntal ]]E‘l md

There are several equivalent ways of defining the sine und cosine functions, We want -
10 emphasize a simple definition {rom which you can easily reproduce many of the basic
properties of these funclions. Referring to Figure 0‘5'4,_ begin by drawing the unit circle
x2+ y2 = 1. Let @ be the angle measured (counterclockwise) from the posilive x-axis to
{he line segment connecting the origin to the point {x, y) on the circle. Here, we measure 8
in radians, where the radian measure of the angtle  is the length of the arc indicated in the
fipure. Again referring to Figure 0.54, we define sin 6 to be the y-coordinate of the point
on the circle and cos 0 to be the x-coordinte of the point. From this definition, it follows
that sin & and cos @ arc defined for all values of 8, so that each has domain —o0 < 0 < 09,
while the range for each of these tuncuons is the mtervql [—1, l]
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 Unless otherwise noted, we always measure angles in radians,

Note that since the circumference of a circle (C = 2r) of radius 1 is 27, we have that
360° corresponds to 27 radians. Similarly, 180° corresponds to & radians, 90° corresponds
to /2 radians, and so on. In the accompanying table, we.list some conmuon angles as
measured in degrees, together with the con responding m(_han measures.

Angle in degrees | 0 | 30° | 452 | 602 | 907 [ 1350 | 180" | 270° | 360°

bis b4 }r 3 : 3 A
Angle in radians | 0 | = I N it R
Ngie in radians . 6 3 2 (4 3 .,

EILBRFM 4.t
Thc funcltonq f (9)

= §inéd 'md g(()) = cos & are pc1 !()dlC, of pc: iod 2,

PROOF

Referring to Figure 0.54, since a complete circle is 2 radians, adding 2n to any angle takes
you all the way around the circle and back to the same point (x, y}. This says that

singd + 2mr) = siné -
and cos{f + 2m) = cosé,

for all values of 8. Furthermore, 27 is the sinallest anglé for which this is true. ®

You are likely already familiar with the umphs of f(\) = sinx dnd g(x) =cosy ﬁhown
in Figures 0.55a and 0.55b, respectively.

FIGURE 0.55a

y = sinx

FIGURE 0.55b
y.=cosy -

¥ ¥
N - + _
. z\ ; : / o
/ Y ) K /
! t ¥ t frer s — i + —» X
s 37 / 5_I \\ -7 / \ oow ,1’! 27
2 2 2 5 ; b
J N/ \/
SO ] - . \‘.V/ - ] 4 \_(



18 CHAPTER O o Prefiminaries

x siny ‘i cosx

0 0 1

3 1 V3

& 2 27

z ¥2 V2

] 2 2

z ] i

3 3 2

T

£ | 0

Fid 3 —1

3 2 2,

o] ¥z _ 42

1 3 ]

s 1 _ 3

3 3 ]

biq 0 —1

33

L 0

2 0 1
40

i Tnstead of writing (sin ¢ ar
t {cos 0, we usually use the

notation sin? 4 and cos? 9,

i respectively.

i

Most calculators have keys for
the functions sin x, cos x and
tan x, but not for the viher three
trigonometric functions. This
reflects the centrai rolé that

sin x, cos x and tan v play in
applications. To calculate
function values for the other
three trigonometric functions,
you ¢an simply use the identities

coty = secy =

1
tanx

and  c¢scx = .
sinx

0-38

Notice that you could slide the graph of y = sinx slightly fo the left.or right.and get an
exact copy of the graph of y == cos.x. Specifically, we have the retationship :

sin (\' + E) ‘= Cosx
sin(x 4 5 ) = cosx.

The accompanying table lists some common values of sing and cosine. Notice that

~ many of these can be read directly from Figure 0.54.

EXAMPLE 4.1 Solvmg Equatlons Involvnng Sines and Cssmes

" Find all solutions of the cquations (1) 2siny — 1 = Oand (b) cos® x — 3cosx 4 =0,

Solution  For {a), notice lh'\t 25iny - 1 = () 1l 2siny = | orsinx = +. From the unit
circle, we ﬁnd that sinv = 3 Lir \ = 6 or v = =, Since sin v has peuod 27r, additional
solutions are = + 2n’, NN 2rr. + 4r and so on. A convenient way of mdlcatmg that
anyinteger mulup]e of 237 can be added to cither solution is 1o write x = % + 2um or
Xx= Sg + 2nmw, for any integer n. Part (b) may look rather difficult at first. Howe\'el,

. notice that it looks like a quadratic equation using cos x msu.ad of x. With this clue, you
" can factor the left-hand side to g,et

0=cos’x — 3L0n +2= (cosx = 1)(0091 -2,

from which it follows that either cos x = 1 orcos x = 2, Since —1 < cosx = 1 forall

¥, the equation cos x = 2 has no solution. However, we gel cos x = | ifx=0,2mor
any integer multiple of 2. We can sunumarize all the solutions by writing x = 2n, for
any mtegcr F S S C e e e N e e e e S Y

We now give definitions of the remaining four trigenometric functions.

IDEFINITION 4.2

- - sinx
The tangent function is defined by tanx = —.
cosy
L - oS
The cotangent function is defined by cot y = ——.-
' siny
The secant function is defined by secx = .
cosx

. 1
The cosecant function is defined by cscx'= Y
- © o osiny

and so on {where cos x

‘We show graphs of these iuncuons in Figures 0. 56a, 0. S()b () S6c dnd 0.56d. Notme in each
graph the locations of the vertical asymptotes, For the

*functions col x 'md cse x, the
division by sin.x causes vertical asymptotes.at 0, +7, :J:21r and so on {whercsinx = 0). For
tan x and sec x, the division by cos ¥ produces vértical asymptotes at £7 /2, £37/2, £57/2
= 0)./Once you have determined the vertical ftsymptotes, the graphs
are relatively easy to draw.

Notice that tan x and cot'x are periedic, of period 7, while sec x and ¢sc x are periodic,

of period 2.
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It is important to learn the effect of slight modifications of these functions. We present
a few ideas here and in the exercises. :

i

BXAMPLE 4.2 Altering Amplitude and Period

Graph y = 2 sinx and y = sin 2x, and describe how each differs from the graph of

y = sin.x (see Figure 0.57a).

FIGURE 0.57a°

Ty =sinx

3

/\

y=

2siny

i
i
3
2

FIGURE 0.57b

» X

FIGURE 0,57c
y = sin(2x)
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similar to the graph of y = sin.x, except that the y-values oscillate between —2 and 2
instcad of —1 and 1. Next, the graph of y = sin 2x is given in Figure 0.57¢. In this case,
the graph is similar to the graph of ¥ = sin x except that the peuod is 7 instead of 27

Seiutton  The graph of y = 2 sin v is given in Figure 0.57b. Notice that this graph is ‘
|
|
{so that the oscillations occur twice as fast). m____. ... J

The results in exumple 4.2 can be generalized. For A > 0, the graph of y = A sin x
oscillates between y = —A and y = A. In this casé, we call A the amplitude of the sine
curve, Notice that for any positive constant ¢, the period of y = sin v is 27 /c. Simiiarly,
for the function A cos cx, the amplitude is A and the period is 2x/c.

“The sine and cosine functions can-be used to model sound waves. A pure one (tlnnk of
a single flute note) is a pressure wave described by the smuso;dﬂ function A sin-ct. (Here,
we are using (he variable 1, since the air pressire i$.a function of fime.) The amplitude A
determines how loud the tone js perceived o be and the petiod determines the pitch of the

" note. In this setting, it is convenient lo talk about the frequency f = ¢/2x. The higher
the frequency is, the higher the piteh of the note will be. (Frequency is measured in hertz,

- where 1 hertz equals 1 cycle per second.) Note that the frequency is simply the reciprocal
of the period, '

Finding Amplitude, Period and Frequency
Find the amplitude, period and frequency of (a) f(x) = 4 cos 3x and
(b) g(x) = 2Zsin{x/3). '

Sedution  (a) For f{x), the amplitude is 4, the period s 27r/3 and the Irequency ‘
is 3/(2m) (see Figure (1.58a). (b) For 2(x), the amplitude i is 2, the peuod 15 2::/(1/3) == 6
and the frequency is | /(()fr) (sce Figure 0.58b).

3
™,

*3\71 2ar —'vr/ a 2w 3T —
Voo
VA
FIGURE 0.58a - . FIGURE 0.58b
y =4cos3y _ y = 2sin{x/3)

There are numerous formulas or identities that are helpful in manipulating the trigono-
melric fumctions. You should observe that, from the definition of sin 8 and cos & (see Figure
0.54), the Pythagorean Theorem gives us the familiar identity

sin®f + cos’ 6 = 1,
since the hypotenuse of the indicated triangle’is 1. This is true for any angle 8. In addition,

sin{—@) = —sin@ and  cos(—0) = cosd
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FIGURE 0.59

e

y =sinxvon [-%, 3]

sin!

“arcsine of x.”

-1 X

Mathematicians often use the
notation aresin v in place of

x. People read sin
interchangeably as “inverse sine
of x”or
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We lst several important identities in Theorem 4.2,

THEOREM 4.7
For any real numbers o 1nd B, the followmg 1(icnm1u hold:
sin (@ 4 f) = sina cos ff smﬁcosa : I R
cos{o + B) = Co8 @ COS B —singsin g : ' . (4.2)
Cosinfa=l0 -2y 0 @3)
cos’a = %(i +cos 2&). © o (d.4)

From the basic identitics summarized in Theorem 4.2, numerous other useful identities
can be derived. We derive two of these in example 4.4,

44 s g s A

HAXAMPLE 4,4 Dernvmg New Tr |gonometrlc ldentltles

Golution  These can be obtained from formulas (4.1) and (4.2}, respectively, by

i
Derive the identities sin 26 = 2sin 0 cos B and cos 20 = cos? 0 -- sin® 6. [
substituting ¢ = & and § = 8. Alternatively, the ldenmy for cos 26 can be obtained by I

B

subtracting equation (4.3) from equation (4.4). ... L

O The Inverse Trigonometric Functions.

We now expand the set of functions available to you by dcﬁning inverses to the rigonometric
functions. To get started, look at 4 graph of y = sinx {sec Figure 0.57a). Notice that we
cannot define an inverse function, since sin x is not one-to-one. Although the sine function
does not have an inverse function, we can define one by modifying the domain of the sine.
We do this by choosing a portion of the-sine curve that passes the horizontal line test.
If we restrict the domain to the intcrval [ 35 ] then y == sinx is one-to-one there (see
Figure 0.59) and, hence, has an inverse. We thus define the inverse sine function by

el e o ' - '
y=sinx ifandonlyil siny=xand -5 <y=2 7.

(4.5)

Think of this definition as follows: if y = sin™" x, then y is the angle (between —% and %)
for which sin y = x, Note that we could have selected any interval on which sin v is one-to-
one, but [——, —] is the most convenient. To verify that lln,sz, are inverse functions, observe
that '

sin(sin”'yy=x, forallx e [—1,1]
and sin”!(sinx)y = x, * forall x, S5 [ Z Z] o T (4.6)

Read equation (4.6) very carefully. It does not siy that sin~! (sin.x) = x for ! x, but rather,
only tfor thoqe in the restricted (lom'un [— 3 2] For instance, sin™}(sin ) # m, since

sin~(sin ) =.sin'_l(_0) —0.
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4.5 Evaiuatmg the Inverse Sme Functron

Evaluate (a) sin”! (%) and (b) sin™! (—3).

Selution  For (a), we look for the angle @ in the iméml [ % %] for which
sin0 = L3, Note that since sin () = % and £ & [=%, £], we have that

n! (‘/_ I For (b), note th‘lt sin ( 6) = F; and —%_G [ﬁ%, 7] Thus, -

sin” ()= w R
Judging by example 4.5, you might think that {4.5) is a roundabout way of defin-
3 ing a function. If so, you've got the idea exactly. In fact, we want 10 emphasize that

what we know about the inverse sine Function is principally through reference to the sine

function. ' )

Recall from our discussion in section 0.3 that we can draw a graph of y =sin™'x
simply by reflecting the graph of .y == sinx on the. interval. [f~ H] (from Figure 0 59)
through the line » = x (sce Figure 0.60).

Turning to y = cos.x, observe that restricting the dmmun to the interval [ £ 2] as
we. did for the inverse sine funiction, will net work here. {Why not?) The simplest way
{0 make cos x one-{o-one is to restrict its domain to tie interval [0, = | (§L€ Figure 0.61).

. Consequently, we define’ lht, inverse eosine function by

FIGURE 0,60

y=sin"'x : —
y=cos"'y ilandonlyif cosy=vand0 <y <m.
y
Nole that here, we have ‘
11, B _ , : .
\\ cosfcos™ )=, forally e [-1,1]
} X .
i
5\ " - Yy . N L 4
. ~and cas”(cosx)=ux, ftorallx e [0, rl
41 oy . . ! o .
; As with the definition of arcsing, it is helpful to think of cos! x as that angle 6 in [0, ] Tor
FIGURE 0.61 . ) P R o coc ) v
which cos 8 = x. As with sin™ x, it is common to use cos *' x and arccos x interchange-
= cosx on {0, 1]
ably.
4.6 Evaluating the Inverse Cosine Function
¥ Evaluate (a) cos™ (0 'md wm cos" (- -?)
4 c
ot Holution  For (a), you will nend to find that angle 9 in {0, | tor whu hcosd = 0. Is
not hard to sce that cos™'(0) = Z. (ff you caleulate lhls on your calculator and get 90,
your calculator is in degrees mode In this event, you showld 1mmedmlcly ch’mge it to
2o " radians mode.) For (b), look for the angle 6 € [0, w ] for which cos @ = ~% 7 Notice
i that cos (%) = —% and £ € {0, wr]. Consequently,
—1 VI A .
COS Al B S [
— o e— > ¥ co ( 2 ) 3 :
-1 1

‘Once again, we obtain the graph of this inverse ﬁmclionhy reflecting the graph of
FIGURE 0.62 y = cosx on the interval [0, 7] (seen in Figure 0.61) lhrough the ling y=x (su: Fig-
ye=cos' x wre 0.62).




0-43 ‘ : SECTION 04 +¢ Trigonoemetric and In(.fefsé Trigonometric Functions !

We can define inverses foreach of the four remaining trigonometric functions in similar
“ways. For y = tan.x, we restrict the domain (o the interval (~%. %). Think about why the
endpoints of this interval are ot included (see Figure 0.63). Having done this, you should

readily see that we define the inverse tangent function by

l y=tan"lx ifandonlyil tany=x and -% <y <%

“The graph of y = tan=! x is then as seen in Figire 0.64, found by reftecting the graph in
Figure (.63 through the line y = x.

3
| 64
i
i
F
' 4
b
b
é 24 ¥
t / : h
: A - i
: o L ES T B
N e
2 ] :
b f ' /
! { i 4 : } T
p -6 -4 -2 2 4 6
¥ | —41
A ! L
10 ! S .
4 5 o
}i 1 —6 S —FTo e -
i . . -
T j; FIGURE 0.63 FIGURE 0.64
N P 7 y=tanxon (=%, %) _ y=tan "y
s L S r
T 7 J— s e e e e et e em o] R e i e e 2
51 l EMAMPLE 4.7 Evaluating an Inverse Tangent
|
: Evaluate tan~'(1).
-10 f ' : : : 3
Solutten You must look for the angle 8 on the interval (ﬂ % *'3) for which tanf = 1.
FIGURE 0.65 This is easy enough. Since tan (1) = 1 and ¥ € (—Z, §), we have that tan™'{1) = §. ..
y = secx on {0, 7] We now turn to defining an inverse for sec.x. First, we mus issue a disclaimer, There
are several reasonable ways in which (o suitably restrict the domain and different authors
restrict it differently. We have (somewhat arbifrarily) chosen to restrict the domain to be
¥ [0, 2) U (£, 7]. Why not use alt of [0, 7]? You need only think about the definition of
4 sec ¥ to see why we needed to exclude the value x = %, See Figurc 0.65 for a graph of
}"”T ' sec x on this domain. (Notc the vertical asymptote at x = 5.) Consequently, we define the
./ﬂ inverse secant function by :
et 100 I -1 . . o -
2 T . y=secT v ifandonlyil secy=xandye [O, %] U (5, n].
. A graph of sec™! v is shown inl Figure 0.66.
t 1 H+ - +—»x
-0 -5 -1t 5 0 e e AT e e S A,

M AMPLE 4.6 Evaluati
FIGURE 0.66 MPELE 4.¢ valuating an Inverse Secant.

y=sec ' x Evaluate sec™ ' (- +/2).
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We can likewise define inverses
to cotx and csc v, As these
functions are used only
infrequently, we will omit them
here and examine them in the
exercises. - '

Function'| Domain -} Range -

sinly =L [[-%.%]

cos'x | [=1 1] [0, 7]

tan~!x

(~00,09) | (-5, %)

FIGURE 0.67
Height of a tower

Solution  You must look for the angle 6 with 6 € [0, 5) U (7 , Ir] tor which

sec = —+/2. Notice that if sech = /2, lh{.ll cosfl = —T = —3F Ru,al] from

example 4.0 that cos q} = ‘/ . Further, the dngke is in the mtenﬂl (%, ] and so,

écc"i(—\/i) = 3"‘ B e e e e I

|
1
T
|
i
am |

" Calculators do not usualty have built-in functions for sec x orsec™ x. In this case, you
Y y

must converi the desired secant value to a cosine valuc and use thc mve\sc cosing iunctmn

- as we did in example 4.8

We summarize the domains andranges of the thrm, main inverse trigonometric funciions
in the margin, :

In many applications, we need to calculdu, the icng,lh of one side of a right triangle
usmg the lenigth of another side and an acute angle (i.e., an fm},lc betwecn Oand 2 md;'ms) o
We can do this ratiter easily, as in example 4.9. o

EXAM 5-"1;,. 4.9 Fmdmg the Helght of a Tower

A person 100 feet from the base of a tower measures dn ang,]s, of 60° from the ground to
the top of the tower (see Figure 0.67). (a) Find the height of thc tower, (b)-What wngle is
measured if the person is 200 feet from the base?

Soiution For (a), we first convert 60° to radians:
b n
60° = 60—— = — radians,
180 31

We are given that the base of the triangle in Figure 0.67 is 100 fect. We must now compuie
the height & of the tower. Using the similar triangles indicated in Figure (.67, we huve

sin - h
cos® 100
so that the height of the toweris - '
ing
h= 1000 = 100tan 6 = - 100 tan = = toof 173 feet.
cost 3

For part (b), the simitar triangles in Figure 0.67. gwe us -

h zo@f f
tanf = =

200 200 2

. g
Since 0 < 8 < 7 we have

3 .
# = tan™" (%) a2 0.7137 radians (about 41 degrees).

“In example 4.10, we simplify expressions involving both trigonometric and inverse
rigonometric functions, '

FERESIEIE . .

4,10 Slmpllf)'ing Expressnons 1nv$l;ung Inverse ;
Trigonometric Functions™ _ ' |
i
|
|

Simplify (a) sin (cos™ 1) and (b} tan (cos™' x)..

Solution Do not look for some arcrmc formula to hblp you out, Think first: cos™' x is

the angle (call it 8) for which x = cos 0. First, consider the case where x > 0. Looking
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sind =Vt~ -l
f = cos

cos =x

FIGURE 0.68
8 = cos™

1 tor ail values of x.

X

tun {cos

Note that this last identity is valid, regardless 01 whether x = cos 8 is positive o
negative. B ...

s 1,4 Q})

(J WRITING EXERCISES

1

[

E

Many stacdents are comfortable using degrees to measure angles
and don’t understand why they must learn radian measures, As
discussed in the text, radians directly measure distance along
the unit circle. Distance is an important aspect of many applica-
tions. In addition, we will see [ater that many calculus formulas
are simpler in radians form than in degrees, Aside from famil-
jarity, discuss any and all advantages of degrees over radians.
On balance, which is better?

A studeat graphs f{x) = cosx on a graphing calculator and
gets what -appears 1o be a straight line at height y =1 in-
stead of the usual cosine curve. Upon investigation, you dis-
cover that the caleulator has graphing window —10 < x < 10,
—10 <y < 10 and is in degrees mode, Explain what went
wrong and how to correct it.

. Inverse functions are necessary for selving equations. The re-

stricted range we had to use to define inverses of the trigonomet-
ric functions also restricts their usefulness in equation solving.
Explain how to use sin~! x to find all solutions of the equation
siny = x, :

~ly and cot™" x on a cal-
=V x, cos™! x and

Discuss how to compute sec™! x, cse
culator that has built-in functions only for sin
an ' ‘

¥ ' "at Figure (.68, we have drawn a right triangle, with hypi)-tcn_usc 1 and adjaceﬁt angle 8.
From the definition of the sine and cosine, then, we have that the base of the triangle is
cosd = x and the altitude is sin @, which by the Pythagorean Theorem is

sin{cos™
Wait! We have not yet finished part (a). Figure 0.68 shows 0 < § < %, but by definition,
x could range from 0 to 7. Does our unswer change il 5 < § < x? Tosee

that it duesn lch’mge note that if 0 < 6 < x, thensin® > 0. From the Pythagorcan
identity sin? 6 + cos? ¢ = 1, we get

sarle—i\/lfuoszﬂ_ﬁ\/l - x2,

Since sin@ = 0, we must have.

For part (b), you can read from Figure 0.68 llml

)= ang =
C

Y R ﬁcus.r — 1 =
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1) =sing = V1 X

sinf =1 — a2,

sind V1 — a2
osé X

§ In example 4.3, f(x)=4cos3x has period 27/3 and
“p(x) = 2sin (\/3) has pericd Grr. Explain why lhe SuLR
h{x) = 4083y + 2sin (x/3) has period 6.

6. Give a different range for sec™! x than that given in the text,

VFor which x's would the value of sec™' x change? Using the

catculator discussion in exercise 4, give one reason why we
might have chosen the range that we dii,

In exercises 1 and 2 comeil thc given ‘radians measure to

degrees. . :
L@i MF @i ¥
@Y MI ©2 @3
In exercises 3 and 4, com'crt."mc given degrees measure to
radians. ’
‘3. (a) 1807
T () 4P

(€} 120° (d) 307
(d) 390",

(b) 2707
(b)Y 80° () 450>
Int exexrcises 5-14, {ind all sdlu;ions of the givmfﬁduaﬁon.

1=0 6, 2siny+1=0
8 2sinky - v3=0

S. 2cosx --
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9, sin®x —~dsiny +3 =0 10, sin’x — 2siny —3 =0 581, f(x) = sin2x —cus Sy
il, sinfx +cosxy —1=0 12. sin2x —cosx =10 52, f(x)=rcosldx —sinTx
13. cos?x -+ cosx : 0 - 14, sin?x —sinx =0

Inexercises 53456_, use t:h'e range for @ to determine the indicated

] In exercises 15-24, sketeh a graph of the function, fanction value.

15. f(x) = sin2x C 16 f(x) =cos3x . S3sin0 =300 findcosd.
17, f(x) =tan2y 18! f{x) = sec3x : 54, cos g = %0 =g <% find sin 6.
19, f{x) = 3cos{x —n/2) 20 fxy=4dcos(x +m) 7 - )

_ ‘ ' . 55, sing = 3.2 <@ <m; findcost.
21, f(x)=sin2x —2cos 2y 22, f(x)=cosdx —sin3x -
23, f{x) = sinxsin f2x 2. f(x) =sinycos 2y 56, sint = % f =0z findtnf.
In exercises 25-32, identify the amplitude, period and frequency. 1n exercises 57—64, use a triangle 1o simplify each expression.

¥ ‘ ¥ ; * |
25, fx) = 3sin2: 26. f(r) = 2cos3 Where applicable, state the range of x’s fer which the simplifica-
. f{x)y=3sin2x . Jx) =2¢os3x .

; tion holds,
27, f{x)=35cosdx - 28, f{x)=23sin3x 57. cos(sin~'x) ) 58, cos(tan—' 1)
29, f{x}=3cos{(Zx —n/2) 30, f{xy=4sin(3x +m) ) ) Co

‘ ‘ 59. tan(sec™! x . cot(cos™! ¥y -
31 f(x)= —dsinx 32. flx)= 2cos3x 9. tan{sec™ 1) 60. cot (cos™"x)
- 61. sin(cos™" 1) 62. cos (sin™' §)°

In exercises 33-36, prove that the given {rigonomeiric identity
is true. o R _ 63. tan{cos™' 3

33, sin(e — f) = sinccos B —sinfeosu

—

6d, csc (‘sin"%)_ )

H‘\; In exercises 65-68, use a graphing calculator or computer to

34, cos (o — B) = cosa cos B 4 sina sin 3 h ) | :
2 A A determine the number of solutions of each equation, and nu-

35 (@) cos(20) =2cos?0— 1 (b) cos(29) =1~ 2sin"p mericatly estimate the solutions (v is in radians).
. 20 = tan d - _ we? § — cot? e : )

36. {a) sec @ =tan“ 0 -+ 1. (b) tse @ =cot* 0 + 1 65, 2cosx =72 —x 66, 3sing =1

In exercises 37—46, evaluate the inverse function by sketching a 67, cosx=x" -2 68 sinx =’

unit cirele and locatiug.the correct angle on the circle. : 69, A person sitting 2 miles from a-rocket Iaunch site measures

37 cos'0 - 38, tan'0 20° up to the current location of the rocket. How high up is the
C Ll gy . rocket? : -

39, sin"'{(—1) - 4{}. cos~H(1)

70. A person who is 6 feet tall stands 4 feet from the base of a

| 1y

4l sec 42. (=1} light pole and casts a 2-foot-long shadow, How tall is the light
43, sec™'2 . . 44, csc™!2 pole? ;

45, cot 1 . 46. wn~! V3 71, A surveyor stands 80 feet from the base of a building and mea-

sures an angle of 30° to the top of the steeple on top of the
. building. ‘The surveyor figures that the centes of the steeple lies
dcosx — 3sinx = 5¢os (x + B). * 20 feet inside the front of the structure. Find the distance from
the ground to the top of the steeple.

47, Prove that, for some constant g,

Then, estimate the value of .

48, Prave that, for some constant j, ﬁ:d 72.- Suppose tirat the surveyor of_exerci_se 71 estimates that thecen-
' ter of the steeple lies between 20" and 21 inside the front of the
structure, Determine how much the extra foot would change
Then, estimate the valie of g, . the calculation of the height of the building.

, 2sinx 4 cosy = ﬁsiu (1 -+ B).

It exercises 49-52, determine whether the function is periodic. H 73, A picture hanging in an art gallery has a frarie 20 inches high,
If it is periodic, find the smailest (fundamental) period. i and the battom of the fraime is 6 feet sbove the floor. A person
whose eyes are 6 feet above the floor stands x fiet from the
) wall, Let A be the ungle formed by the ray from the person’s
50, f(x) =sinx —cos v2x eye to the bottom of the frame aid the ray from the person’s

49, f(x)=cos2xy+3sinax
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eye 1o the top of the frame. Write A as a function of x and geaph
y = A

In golf, the goat is to hit a baH into a hole of disxmeter 4.5 inches.
Suppose a golfer stands x feet from the hole trying to putt the
ball'into the hole. A first approximation of the margin of error
it u pult is fo measure the angle A formed by the ray from the
bail to the right edge of the hole and the ray from the balt to
the lefl edge of the hole. Find A as a function of .

In an AC circuit, the voltage is given by v(f) = v, sin2n f1,
where v, is the peak voltage and f is the frequency in Hz. A
voltmeter actuadly measures an average (called the root-mean-
sguare) veltage, equal to v,/ /2. I the voltage has amplitude
170 and period 7730, find the frequency and meter voltage.

An old-style LP record player rotates records at 33_{ rpm (rev-
olutions per minute). What is the period (in minutes) of the
rotation? What is the period for a 45-rpm record?

Suppose that the ticket sales of an airline (in thousands of
dollars) is given by s(t) = 110+ 2¢ + 15sin ($ar1), where ¢
is measured in months. What real-world phenomenen might
caiise the fluctuation in ticket sales modeted by the sine term?
Based on your answer, what month corresponds to = 07
Disreparding seasonal flucteations, by what amount is the air-
line’s sales increasing annually? ' S

Piuno tuners sometimes start by striking a tuning fork and
then the corresponding piano key. If the tuning fork and piino
note “each have frc_quency""S, then the resulting sound is
sin 8¢ + sin 8. Graph this. 1f the piano is slightly out-of-tune
at frequency 8.1, the resulting sound is sin 87 4 sin 8.1¢. Graph
this dnd explain how the piano funer can hear the small differ-
ence in frequency, ‘

Give precise definitions of ¢sc™! x and cot™! x.

In baseball, outfielders are able to easily track down and calch
fty balls that have very Jong and high trajecteries. Physicists
have argued foryears about how this is done. A recent explana-
tion involves the following geometry.

47

The player can catch the ball by ninning to keep the an-
gle ¥ constant (this makes it appear that the ball is moving
in a straight line). Assuming that-all trjangles shown are right

. tana ‘
trinngles, show that tan v = F——E and then solve for .

_tan

Ball
N ]

Vo

Homie Outfielder

" plate

1

EXPLORATORY EXERCISES

In his book and video series The Rinig of Truth, physicist Philip
Morrison performed an experiment to ¢stimate the circumfer-
enge of the earth. In Nebraska, he measured the angle to a
bright star in the sky, then drove 370 miles due south into
Kansas and measured the new angle to the star. Some geome-
try shows that the difference in angtes, about 5.02°, equals the
angle from the center of: the earth te the two locations in Ne-
braska and Kansas. [fthe earth is perfectly spherical (it's not)
and the circumference of the portion-of the circle measured out
by 5.02° is 370 miles, ¢stimate the circumference of the earth.
This experiment was based on a similar experiment by the an-

- cient Greek scientist Eratosthenes. The dncient Greeks and the

Spaniards of Ctilllliibu_s’ diy knew that the earth was round,
they just disagreed about the-circumference. Columbus argued
for a figure aboul half of the actual value, since a ship couldn’t
sirvive on the water long enough to navigate the true distance.

. An oil tank with circulir cross sections lies on its side. A stick

is inserted in a hole at the top and used to measure the depth
o of vil in the tank. Based on this measurement, the goalis to
compute the percentage of oil left in the tank.
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To simplify calculations, suppose thé circle is a unit circle with

center at (0, 0). Sketch radii extending from the origin to the -

top of ihe.oil, The area of ol at the botiom equals the area of

the portion of the circle bounded by the radii minus the area

of the triangle formed above the oil in the figure.

Start with the triangle, which has area one-half base times
height. Explain why the height is .1 — d. Find a right trian-
gle in the figure (there are two of them) with hypotenuse I
(the radius of the circle) and one vertical side of length 1 — d.
The horizontal side has length equal to one-half the base of
the larger tridngle. Show that this equals /1 — (1 — d)*. The
area of the portion of the circle equals 78/2x == 0/2, where

et n e g IR ey AR A
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¢ is the angle at the top of the triangle. Find this angle as
a function of d. (Hint: Go back to the right triangle used

‘above with upper angle 8/2.) Thén find the aren filled with

oil and divide by 7 to get the portion of the tank filled with

“oil.

Computer graphics can beé misleading. This exercise works
best using a “disconnected” graps (individual dols, not con-
nected). Graph y = sin x? using a graphing window for which
each pixel represents a step of 0.1 in the - or y-direction.
You should get the impression of a sine wave that oscillates

-more and mote rapidiy as you move to the left and right. Next,
-change the giaphing window so that the middle of the original

screen (probably v = 0) is-at the far left of the new screen.
You will likely seec what appears to be a random jmnble of
dots. Continue to change the graphing window by increasing
t:he x-values. Describe the pitierns or lack of patterns that you
see. You should find one pattern that looks like two rows of

‘dots ucross the top and bottom of the screen; another pattern

looks like the original sine wave. For each pattern that you
find, pick adjucent points with x-coordinates a4 and b, Then
change the graphing window so that ¢ < x < b and find the
portion of the graph that is missing. Remember that, whether
the points are connected or not, computer graphs ghways leave
out part of the graph; it is part of your job to keow whether or
not the missing part is important, '

e T T R it e Bl

@) 0.5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Some bacteria reproduce very quickly, as you may have discovered if you have ever had an
infected cut or strep throat. Under the right circumstinces, the number of bacleria in certain
culures will double in as little as an hour. In this section, we dmcuss some funchons that
can be used to model such rapid growth.

Suppose that initially there are 100 bacteriaat a gwcn site and the population doubles
every hour. Call the population function P(¢), where.f represents tire (m howrs) and start
the clock running at time 1 = 0. Since the initial poputation is 100, we have P(0) = 100.
After 1 hour, the population will double to 200, so that P(1) = 200. After another hour, the
population will have doubled again to 400, making P(2) = 400 and so on,

Tocompute the bacterial population after 10 hours, you could calculate the population at
4 hours, 5 hours and so on, or you could use the following shortcut. To find £(1), double the
initial population, so that P{1) = 2 - 100. To find P(2), double the popuhuon attimet =1,
s0 that P(2) =22 100 = 22 . 100. Similarly, P(3) = 2* - 100, This pdltem leads us (o

P10y =219 100 = 102,400,
Observe that the population can be modeled by the function
Piy=2".100.

We call P(s) an exponential function because the w 1mblc t is in the exponent. There is a

\;uhtic question here: what is the domain of this function? We have so far used only integer
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To simpiify catculations, suppose the circle is a unit circle with
center at (0, 1. Sketch radii extending from the origin to the
top of the cil. The area of oil at the bottom equals the area of
the portion of the circte bounded by the radii minus the area
of the triangle formed above the oil in the figure.

Start with the triangle, which has arca one-half base times
height. Explain why the height is | — d. Find a right trian-
gle in the figure (there are two of them) with hypotenuse |

P 3.

0-48

- @ is the angle at the top of the triangle. Find this angle as

a function of o. (Hint: Go back to the right triangle used
above with upper angle #/2.) Then find the area filed with
oil and divide by 71 to get the portion of the tank filled with

- oil..

‘Computer graphics can be misleading. This exercise works

best using a “disconnected” graph (individual dots, not con-
nected), Graph y = sin x? using a graphing window for which

wach pixel represents a step of 0.1 in the x- or y-direction.

You should get the impression of a sine wave that oscillates
more and more rapidly as you move to the left and right. Next,
change the graphing window so that the middle of the original
sereen (probably v = 0) is at the far lefl of the new screen.

" You will likely see what appears to be a random jumble of

dots, Continue to change the graphing wmdow by increasing
the x-values, Describe the patterns or tack of patteras that you
see. You should find one pattern that looks like two rows of
dots across the top uni bottom of the screen; another pattern
looks like the original sine wave, For each pattern that you
find, pick adjacent points with x-coordinates ¢ and b. Then

_change the graphing window so that @ < x < b and find the

(the radius of the ¢ircle) and one vertical side of length | — o,
The harizontat side has length equal to one-half the base of
the larger triangle. Show that this equals /I — (1 — d)?. The
area of the portion of the circle équals 78/2x = 6/2, where

“portion of the graph that is missing. Remember that, whether
the points are connected or not, computer graphs always leave
out part of the graph; it is part of your jeb to know whether.or
not the missing part is imporiant.
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@) 6.5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Some bacteria reproduce very guickly, as you may have discovered if you have ever had an

infected cut or strep throat. Under the right circumstances, the number of bacteria in certain

cultures will double in as little as an hour. In this section, we discuss some funcuons that
can be used (o model such rapid growth,

Suppose that initially there are 100 bacteria at a given site and the populauon doubies
every hour. Call the population function P(1), where 1 represents time (in hours) and start
the clock running at time ¢ = ). Since the initial population is 100, we have P{0) = 100.
After 1 hour, the population will double to 200, so that P(1) = 200. Afier another hour, the

_ population will have doubled again to 400, making P(2) = 400 and so on.

To compute the bacterial population after 10hours, you could calculate the population at

4 hours, 5 hours and so on, or yuu could use the followmg shotteut. To find P(1), double the
* initial population, so that £(1) = 2 - 100. To find P(2), double the population attime = 1,
so that P(2y=2-2-100= 2%. 100 Similarly, P(3) = 21 _100. This pwucrn lusdsus to

P(10y = 2'" 100 = 102, 400,
Observe that the population can be modeled by (lie function
Pty =2"-100.

We call P(r) an exponential function because the variable ¢ is in the exponent, There isa
“subtle question here: what is the domain of this tunchon? We have so far uscd only mtegcl
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values of 7, but for what other values of 1 does P(?}_ make sense? Certainly, rational powers
“make sense, as in P(1/2) = 21/2. 100, where 2V/? = V2. 2. This says that the number of
bacteria in thc culture after a half hour is 'spproxnmtcly :

P(1/2) =2 100 = V2 100 ~ 141

It’s a simple matter to inlérprct fractional powers as 1'00_ts. For instance,

= x,
W'=Y,
M=,

¥ = U = (UxY
PERRNI [V

and so on. But, what about irrational powers? They are harder to define, but they work
exactly the way you would want them to. For instance, since m is between 3.14 and 3.15,
27 is between 2% and 2343, In this way, we define 2° for x irrational to fill in the gaps
in the graph of y = 2° for x rational. That is, if x-is irrational and @ < x < b, for rational
numbers a and b, then 2¢ < 2% < 2. This is the logm behind the definition of irrational
powers.

I for some reason you wanted to find the bacterial population afier hours you can
use your calculator or computer lo obtain the approximate population:

P(r) =27 - 100 = 882.

For your convenience, we now summarize the usual rules of exponents.

RULES OF EXPONENTS

» For any integers m and n,
A = Yem = (YY"
* For any real number p,

= —

+ For any real numbers p-and g,
L (@PY = P
+ For any real numbers p and g, -

CxP o = P

Throughout your calculus course, you will iieed to be able to qulcl\]y counvert back and forth
between exponential form and tmc,uondl orrool form.

EXAMPLE 5, Conveltlng Expressmns to Exponential Form
PR I I " 3yt
Converl each to exponential form; () 3vx3, (b) —=, (¢} a zm(t ({l) (2% L2352
YT 2y .
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Seittion  For (a), simply leave the 3 alone and convert the.power:
3 = 392
For (b), use a negative exponent o write x in the numerator:

3 = 5x 71/‘
\/" |
For (¢}, first separate the constants flom the variables and then \lmpllf\’I .

w2 341 3 ESVERE I

2\/‘— 22 %2"‘ N

For (d), first work inside the parcnthcses and then square:

(2r 23{-\‘ (27+1+\ (22l l—'i) .24:\'—}6. "

) The function in part (d} of example 5.1 is callccll an exponential function with a base
- of 2 : :

DEFINITION 5.1

For any constant b > 0, the function f(x}=5"is cal]cdhn exponential function.
Here, b is called thc bme and xis lh:, e\ponent

Be careful to distinguish between algebraic functions such as f(x) = x¥ and
g(x) = x*? and exponential functions. For exponential functions sdch as A(x) = 2%, the
variable is in the exponent (hence the name), instead of in the base. Also, notice that
the domain of an exponential function is the entire real line, (— oo, o), while the r’mge is
the open intervat (0, oo), since &' > O for all x.

While any positive real number can be used as a basc for an c,\ponenml function,
three bases are the most commonly used in practice. Base 2 arises nauardlly when analyzing

- processes that double at regukir-intervals (such as the bacteria at the beginning of this
section). Our standard counting system is base 10, so this base is commonly used. However,
far and away the most useful base is the irrational number ¢. Like m, the number e has a
surprising tendency to occur in important caleulations, We define e by

. 1 n . N
e = lim (1 + g) . ] (5.1}
Ao n

. Note that equation (5.1) has at least two serious shortcomings. First, we have not yet said
what the notation hm means, (In fact, we won’t define this umll Chapk:l 1) Sewnd it’s

unclear why anyone woukd ever define a number in such 2 strange way. We will not be
in a position 1o answer the second question until Clnple: 4 (but the answer is worth the
wait),

It suffices for the morment to say that equation (5.1) means tlm e can be qpprommted
by calculating values of (1 + 1/7#)" for large values of n and that the larger the value of
n, the closer the approximation will be to the actual value of e. Tn particular, if you look
at the sequence of numbers (1 + 1/2)%, (1 + 1/3)%, (1 + 1/4)* and so on, they will get
progressively closer and closer to {i.e., home in on) the irrational number e.
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To get an idea of the value of ¢, compute several of these numbers:

N
1+ — = 2.5937...,
( F 10) .

1 100G .
L+—— ] . =2.7169...,
( * 1000) g

1 10,0007 7. V ‘- .
I = 2, 181..,
( + 10 000) =27 ol

and so on. You should compute enough of” 1hew \'aluex to convince yourself tlnt the first
few digits of the decimal représentation of ¢ (e 2718281828459, . ) are correct,

o

P et E Ermne a1 emi e £ = i e et i en min 2 e memnnmns o @

EXAMPLE 5.7 Computing Values of Exponentials

Approximate e, e*”'_i and ¢¥.
Solution  From u calculator, we find that

¢t=e e e e 54,598,
From the usual rules of exponents, ‘

LRI TP
U e = x0,81873.
24 ) E”S \5/; .

(On a calculator, it is couvgnieul to replace —1/5 with --0.2:) Finally, =1 =

The graphs of the exponential functions summarize many of their important properties,

}{f\?fi PL 253 Sketch:ng Graphs of Exponentfals

Sketch the graphs of the expouentiad functions y = 2, y=et, yes e"‘ y = e'?,
y=({/2)andy = e¢™*, :

Selution  Using a calculator or computer, you should get graphs similar to those that
fotlow. : - o '

304 V ; : -.lJO'- l /

20+ /'” ' o 07 /

10 / o -/
' x bttt X
-4 -2 24 4 -2 Sro4

FIGURE 0.69a . _FIGURE 0.69b

y=2 y=e"

Notice that each of the graphs in Figures 0.69a,0.69b,-0.70a and 0.70b starts very near
the x-axis (reading lefl to right), passes through the point (0, 1) and then rises steeply.
This is true for all exponentials with base greater than 1 and with a positive coefficient
in the exponent. Note that the larger the base (e > 2) or the larger the coefficient in the
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¥ ) ¥
F Y . . . F Y
30+ : : T i
201 / :7 ' wr
o+ /- 10t '
/’; ’ . . - ,»-‘,'/
B L e e e e e S QI SR S N
e 24 -4 -2 27 4
FIGURE0.702a - FIGURE0.705
y o= c'l\ . Loy = er,‘!
y ¥
Iy B 3
o+ o 304
204 20+
10+ ' : SN jed
: - ,
“x__m ) \\.Ay_
i g X e
4 -2 2 4 -4 =2 2 4
FIGURE 0.71a FI.GURE 0.71b
y= (/) y=eg"

exponent (2 > 1 > 1/2), the more quickly the graph riscs 1o the right (and drops to the
left). Note that the graphs in Figures 0.71a and 0.71b are the. mirror images in the y-axis
of Figures 0.69a and (0.69b, respectively. The graphs rise as you move lo the left and
drop toward the y-axis as you ntove to. the right. It’s worth notmg that by the rules of
exponents, (1/2)* =277 'md (t/e) = PR T T N

In Figures 0.69-0.71, each exponential function is one-to-one and, hence, has an inverse
function. We define the logarithmic functions to be inverses of the exponential functions.

CFINITION b2

For any positive number b # 1, the logarithm function with base b, written log, xyis
defined by ;

y=log,x ifandonlyif x=25""

That is, the logarithm log, x gives the exponent to which you must raise the base b to
get the given number x, For example, '

logg10 = 1 (since 10' = 10),
10g,, 100 == 2 (since 10° = 100),
logy, 1600 =3 (since 10° = 1000)

and so on. The value of log,q 45 is less clear than the prec,cding three values, but the idea
is the same: you need to find the number y such that 10¥ = 45, The answer is between
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- backward (for convenience), we have

SECTION 0.5 »= E&ponentfa] :ind Logarithmic Functions -~ 53

1 and 2, bul to be more pl:,c:sc you will need 1o employ lrml and error, You should get
log,, 45 =~ 1.6532.

Observe from Definition 5.2 that for any baxe bh> O £ 1), if y= Iogb X, then
x =b¥ > 0. That is, the domain of f{x) =log,x is th-, interval (0, 00). leewme, the
range of_f is the entire real line, (--00, 00}

As with exponeml.t! functions, the most uscful bases turn out to be 2, 10, and e. We

-usually abbreviate log,, x by log x. Similarly, 103 X 1susmll)' abbreviated In x (for natural
logarithm).

S AR BB N o a o = e 1 —n i e e

15 }(Ai\*’ PL ‘w Evaluatmg Logartthms

o
i !
Without using yvour calculator, deienmnc log(I/ 10), log(() 001),Ine md Ine’. i
Solution Since 1/10= 10" ‘,log(l/l()) Slmllarly since 0.001 = IO" , we j;

have that log(0.001) = —3. Since Ine = 10;:‘ ‘ In ¢ = 1. Similarly, ne’ = 3.

We want to emphasize the inverse relationship. defined by Definition 5.2. That is, &°
and log,, v are inverse functions for any b > 0(h # 1),
In particular, for the buse ¢, we have

M =x foranyx>0 and  In{¢")=x foranyy. (5.2)

We demonstrate this as follows. Let
Cy=lnx=log, x.
By Definition 5.2, we have that
- . ¥ Inx

XN=¢ =¢

We can use this relationship between natural logarithms and exponentials to xolve equallons
involving logarithms and exponentials, as in examples 5.5 and 5.6.

oz g A

EXAMPL

= 5.5 Solving-a Logarithmic Equation
Sotve the equation In{x -+ 5) = 3 for x.

Holution Taking the exponential of both sides of the L(]ll'll]Dll and writing. thmgs

et = el-"(“JrS) = t +' 3,

from (5.2), Subtracting 5 from both sides gives us

e~ S=owoow o

CXAMPLE 5.4 Solving an Exponential Equation-
Sotve the equation-¢* ! = 7 for x. '

Solution  Taking the natural logarithm of both SldL,S and wnlmg lhmgs backward (for
simplicity), we have rom {5.2) that .

7=y =y 44
Subtracting 4 from both sides yields '

7 —-4= R S —— § e
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y . . Asalways, graphs provide ¢xcellent visual sumnmuus of the 1mp011'1nt pr opcrttcs of a
t " funclion, :
2__
1+ o b S TS SRS — L _ _
peem T Ty HIAM PL 5.7 Sketchmg Graphs of Logal }thms
1 2 3 4 5
-t 7/ ! ‘ ' Skelch graphs of y = log v and y = In.x, and briefly discuss the plopemcs of each;
__2.._ .
.l Seolution  From a calculator or computer, you should. obtain graphs resembling lhoqe
- in Figures (.72a and 0.72b. Notice that both graphs appear-to have a vertical asymplote
- at.x = 0 (why would that be?), cross the x-axis at v = L and very gmdually increase as
FIGURE 0.72a - x increases. Neither grapli has any. points to the left of the y-axis,since log x and ln x
y =logx are defined only for x > 0, The two graphs arc very similar, although not identical, s
¥ i - 'The properties just described graphically ure summarized in Theorem 5.1,
A 5
1t P THEGREM 5.1
) r/ Vb | Forany positive base b # 1,
2] (i) log,.x is defined only for x > 0,
(i) log, 1 = 0and : o
=37 (m) if b > 1, then logb x<0for0<x < |and logb X > Ofm x> 1

FIGURE 0.72b

y=Inx

PROOF

(iY Note that since & > 0, b* > 0 for any y. So, il log, x = y, thenx = #" > 0,
(i) Since $° = I for any number & # 0, log, 1 = 0 (i.e., the exponent to which you raise
the base b to get the number 1 is 0), .
(iii) We leave this as an exercise.

All logarithms share a set of defining properties, as stated in‘Theorem 572,

HFORFM 2

For any positive base b # 1 and positive numbc;s x ‘md ¥, we have

(i) logylxy) =log, x +-log, ¥,
(i) logyix/y) = log, x - log, y and
(iii) Iogb(t‘) =y 10gb

As with most algebraic rules, each one of these properties can dramatically simplify
catculations when it applies, '

FMAMPLE 5.8 Simplifying Logarithmic Expressions
Write each as a single logarithim: () log, 27% — log, 3."‘ and (b) _ln 8 — 3l (1/2).

Solution  First, note that there is more than one order in which to work each problem.
For part (), we have 27 = 3% and so, 27 == (3%)" = 3% This gives us

log, 27" —log, 3" = logo 3 log, 3°
2 2
= 3xlog,3 —xlog 3= 2x log2 3 =log, 3%,
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. Solution From Theorem 5.2, we have that

_establishing (5.4).

SECTION 0.5 »- Es;ponential and Logarithmic Functions 5%

For part (b), note that § = 2¥ and 1/2 = 271, Then,

8 —3m(1/2) =32 -3(-m?2)-
=32 +3I2=6In2=1In2%=In64

In some circurnstances, it is beneficial to usc the rules of logarithms to expand a given
expression, as in example 5.9, ‘ ‘

P R T Y S

EXAMPLE & 9 Expandmg a Logarithm:c EXpresSion

' 34
Use the rules of logavithins to exp.md the expression In (—;)
7

PN . o -
In (—5—) = ()~ @) =m ) () ~n ()
z - . :
= 3111.\' 4y —Slg =l ' : N

Using the rules of exponents and logdu{hms we.can rewrite any prmlenllal as an

exponential with base ¢, as follows, For any basc ¢ > 0 we havc

[a.t — eln(ul) — e,tlnu‘ . ’ (53)

This follows from Theorem 5.2 (jii) and the fact that e‘“’ =y, forally > 0.

T O I T T —— —————

D(AM FLE 5.1 {3 Rewntlng Exponent:als as Exponentlals with Base e
Rewrite the exponcnlﬂls 2', 5% and (2/5)‘ as exponcnlnls with base ¢

Solution  From (5. 3), we h'w
: 2% — eln[Z') :: exlnz‘

g ,ln{S') — '_‘,.\'InS ’

2 <
and : (3) = e‘““z/j)'] = e‘ ‘"W”

WMo [P

Just as we can rewrite an ekponential with any positive base in terms of an exponential
with base e, we can rewrite any logarithm in terms of natuml logarithms, as follows. For
any positive base & (b # 1), we wﬂ] show that

5.4

Let y = log, x. Then by Definition 5.2, we have that x = b". Taking the natural logarithm
of both sides of this equation, we get by Theorem 5.2 (iii) that

Inx = In(p’) = ylnb.
Dividing both sides by Iti b (since b 7é 1, In b # 0) gives us

‘ Inx.
= nb"
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Equation (5.4) is useful for computing logarithms with bases other than ¢ o 10, This
is important since, more than likely, your calculator hdb kcys only for In v and log x. We
iltustrate this idea in example 5.1 1.

& }1 :EM %‘LF 5.1 1 Appi oximatlng the Value of Logaz 1thms :
Approximate the value of log; 12.

Sointion From (5.4), we have

tog. 12 = 42 1 2769894
o = == q. by .
OB T ey . i S R

O Hyperbolic Functions

‘There are two special combinations of exponential functions, Lalled the hvpu bohc sine and
hyperbolic cosine functions, that have important applications. For instanice, (he Gateway
Arch in Saint Louis was built in the shape of a hyperbolic cosine graph. (See the photograph
in the margin.) The hyperbolic sine function [denoted by sinh (x)] 'and thc hyperbolic cosine
function [denoted by cosh (1)] are defined by :

. v —et il +'€A‘r
sithy = ————  and ~coshy = —
2 2

Graphs of these functions are shown in Figures 0. 73'1 and 0.73b. The hyperbolic functions
(including the hyperbolic 1angent, tanh x, defined in the expected way) are often convenient
to use when $olving equations. For now, we verily several basic properties that the hyperbolic
functions satisfy in parallel with their trigonometric'counterparts.

Saint Louis Gateway Arch

e ~ rd
—t ' e px : O —
~4 2 4 - =2 2 4
—54 —54
~10+ o Cwf
FIGURE 0.73a . FIGURE 0.73b
y = sinhx -~ = - S y = vcoshyx

# 53 :\M PLE B i? Computmg Values of Hyperbohc Functlons

Compute f(0), f(1) and S (1), and determing how f{x) and f(—x) compare for gach
function: {a) f{x) = sinhx and (b) f(x) =coshx. ; C '




0,5 and (3, 9).
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Year U.S. Populution
1790 3,929,214
1800 5,308,483
1810 7,239,881 -
1820 9,638,453
1830 | 12,866,020
1840 | 17,069,453
1850 23,191,876
186D 31,443,321
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: D0 L ! '
tintation  For part (a), we have sinh () = ;% =-5-= 0. Note that this
: o el
means that sinh 0 = sin 0 == 0. Also, we have sinh 1 = 52—L 2 1,18, while
S ' ‘
sinth(—1) = — =z —F. 8. Notice that sinh{—1) = —sinh 1. In fuct, for any x,
-5 _ ;x Y P ul.r' ) )
sinh{(—x) = ¢ 3 ¢ : S 2‘8 ) ::.‘—' Sii'lh.\'.
{The same mlc holds for the sine funcuon sm(r— X) = --sinx.] For pa:i {b), we havc
et 14
cosh0 = 5= T = 1. Note that thl‘; means thai cosh() = ¢os0 = I, Alsg,
1 ..
e fe”’ ) el e .
we have cosh 1 = ———— 23 1.54, while cosh(—1) = — 2 PN 1.54, Notice that
cosh(—1)=rcoshl.In fact, for any v, ) ’
. é—_\' ' ()\—' ({‘ I e—.T .
cosh (_—.l) = > = 5 = cosh .

[The same rule holds for the cosine function: cos(—~x) = cosx.] # . .

(O Fitting a Curve to Data

You are familiar with the idea that two points determine a straight line. As we see in

“example 5.13, two points will also‘dctcrminc an exponcntial't’unction.

EXAMPLE 5, 6 3 Matchlng -D-!aéa to an [:xponentfal Curve

Find the expenential function of the fo:m Sx) = ue"‘ that passcs through the points

Solutiorr We must solve fore and &, using the propertics of logar lthms and t,\ponenlnh
First, for the graph o pass through the point (0, 5), this means that .

5= fO)=ac " =a,
so that @ = 5. Next, for the gritph to pass through the point (3, 9, we'must have
= f(3) =ae™ = 502

To solve for b, we divide both sides of the equation by 3 'md !'lke the natural logarithm
of both sides, which yields _ :
In (5) =ne =34, .

from (5.2). Finally, dividing by 3 gives us the value for b:

1 9y

Lo .
Thus, f(x} = Seiln(wél". SR

Consider the population of the United States from 1790 to 1860, found in the accompa-
nying table. A plot of these data points can be seent in Figure 0.74 {where the vertical scate
represents the population in milions). This shows that the pepulation was increasing, with
larger and larger increases each decade. If you sketch-an imaginary curve through these
points, you will probably get the impression of a parabola or perhaps the right half of a
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A ERCE

X WRITING EXERCISES

1. Starting from a single cell, a humnan being is formed by 50 gen-
erations of cell division. Explain why after » divisions there

8 (f))

cubic or exponential. And that’s the question: are these data best modeled by a quadrallc
function, a cubic function, an exponential function or WE at?
We can use the properties of logarithms from ’I"hcorun 5.2 to help determine whether a

~ given set of data is modeled better by a polynomial or an exponential funcnon as follows.
_ Suppose that the data actually come from an exponential, say, y = ae’ (i ¢, theduta pomts

lie on the graph of this cxpnnenml) Then, .

Iny = ln‘(ac""‘) =a+Ine™ =Ina+bx.

“1f you draw a new graph, where the horizontal axis shows values of x and the veitical axis

corresponds to values of In y, then the graph will be the line tn y = by + ¢ {where the
constant ¢ == Ina). On the other hand, suppose the data actual]y came from a polynomial.
If y = ba" (for any n), then observe that

Iy = In(bx") = Inb+ Inx" =In b+ nhx.

In this case, a graph with horizontal and vertical axes corresponding to v.and In y, respec-
tivety, will look like the graph of'a logarithm, In y = # In x -+ ¢. Such semi-log graphs
(i.e., graphs of In y versus x) let us distinguish the graph of an_exponential from that of a
polynomial: graphs of exponentials become straight lines, while graphs of polynomials (of
depree > 1) become logarithmic curves. Scientists and engineers frequently use semi-log
graphs to help them gain an vnderstanding of physical phenomena represented-by some
collection of data.

A

4 Usinmg- a Semi- Log Graph to Identlfy a Type of Functlon

FRAMPL
Determine whether the population of the United St'ues from 1790 to 1860 was
increasing exponentially or as a polynomial. : :

Solution  As already indicated, the rick is to'draw a semi-log graph. That is, instead
of plotting (1, 3.9) as the first data point, plot (1, In 3.9} and so on. A semi-log plot of
this data set is seen in Figure 0.75. Although the points are not exactly colincar (how
would you prove this?), the plot is very close to a straight Tine with In y~intercept of 1
and slope 0.3. You should conclude that the population is well modeled by an -
exponential function. The exponential model would be y = P(#) = ae™, where !
represents the number of decades since 1780. Here, # Is the slope and Ina is the

In y-intercept of the ling in the semi-log graph. That is, b~ 0.3 and Inéa = 1 (why?),
so that a = ¢, The population is then modeled by ‘

P =e-Y million. & ... . .

2 Explain why the graphs of f(x) =2"" and g(x).= (%)' are
the same.

are 27 cells. Guess how many cells will be present after 50 3, Compare  [(x) = x* Cand g(x)=2° for x = 2, r=1,
divisions, then compute 2%, Briefly discuss how rapidly expo- v =2,x=3and x = 4. ln general, which function is bigger
nential functions increase.

for large values of x7 For small values of x?
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4, Comp'are f)=2" and glxy=3* for x =2, x = f% H In exercises 43 and 44 use equatmn &) 4) to approximate the

X = 5 and x = 2. In general, which function is bigger for neg- value.
ative values of ¥ ? Yor positive values of x? 43, () tog, 7 (b) log_, 60' () log, 313
B dd, (@ logy & (Mlog,3 (o) logy8

In exercises 1-6, conver! each exponential expression info frac-
fional or root form, '

3,31,
6. 4

2. 47
5. 5%

i 27
4. G¥°

45,

. . _— . 49,
Inexercises 7-12, convert each expression into expenential form.

1 o= 2
7. -1—1 ‘ 8. \/.’&'2 ) 9. :g
4 1 3 :
10. — I, —— 12, —— 51.
at 2% 2+/xd

In exercises 1316, find the integer value of the given expression
without using o calculator.

2
V8 16

273 vy
14, 8 2173 R —(1/3)2-

13, 432 15.

@ In excrcises 17--20, use # calculator or computer to estimate each

value,

17, 207172 18, 4072

19, —i; 20, _1/%

N ‘57,

7\,- In exercises 21-30, sketch a graph of the given Funetion,

21, f(x)y=¢e* 2% flixy=é*r

23, f(x) = 2¢ 24, flx)=e©

25. f(x) =3¢ 26. f(x)= 10e~" 8.

27, fiey=In2x 28, f(x)=Inx?

29, f(-\')..: et 30. ,j (x)y= e sinx ; .

In exercises 31-40, solye the gi\fczi cqualiuﬁ for x. '

3. &M =2 S 32 et =3

3, (- =0 U 34 ke 420 =0

35, In2x = 4 .36, Z2In3x =1 B

37. 4lnx = -8 38, ¥’Inx —9Inx =0 E}:J 60.

39, et =4 40, In{e™) =6

In exercises 41 and 42, use the definition of logarithim to deter-
niine the value,

41, () log; 9 (BYlog, 64 (¢} log; 3
42, (Wlog, + (Mlog,2 () log,3

47. $ind —In2

In exercises 45-50, rewrife the ¢xpression as a single logarithm,

d46. 2In4 —In3
48. 32 —In}
50, In9—-21In3

n3-—In4d

n2+4in2

In exercises 5154, find a fu'ncli(_'m of the form f(x) = e’ with
the given function values, .

FOy =2, f(2) =

52. f(0)=3,/(3)=4

fO) =4, f2)=2 C 54 FlO) =35, f(1)=2

A fast-food restaurant gives every customer a game ticket. With
each ticket, the customer has o 1-in- 10 chance of winning a free
meal. If you go 10 1imes, estimate your ¢hances of wmnmg at
least one free meal. The exact probability is 1 — (f) . Com-
puie this number and compare it to your guess.

In exercise 55, if you had 20 tickets with « §-in-20 chance

of winning, would you expect your probability of winning at
Jeast onu to increase or decrease? Compute the probabxl:ty
I— (%) to find out,

In general, if you have n chances of winning with & I-in-n
chance on each try, the probability of winniag at least once is
L—{1—1)" Asn gets larger, what number does this prob-
ability approach? (Hint; There is-u very good | reason that this
guestion is in this section!)

If y=a:x% show that Iny =lna+miny. If v =Iny,
1w =Inx and b = Ina, show that v = mu + . Explain why
the graph of v s a function of # would be a straight line. This
graph is called the log-tog plot of y and x.

For the given dam' gompute » = Iny and n = Inx, and plot
points (i, v), Find constants i and b such that v = mu + b
and use lhe result:, of exereise 58 to lind a constant a such that
y=d-x" :

32

Y| 22 | 24 | 26 | 28 [ 3D

¥ 11452 [ 17.28 | 2028 | 23.52 [ 27.0 | 30.72
Repeat exercise 59 for the given data. -

x |28 kX1 32 3.4 36 3.8

y | 937 | 1039 ] 11.45.| 12,54 | 13.06 | 14.81

. Construct a log-log pl_ol_‘(see:exercise 58) of the U.S. p{)puia-

tion data in exaniple 5,14, Compared to the semi-log plot of the

‘data in Figure (.75, does the log-log plot ook linear? Based on

this, are the population data modeled better by an exponential
function or a polynomial {(power) function?
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Construct a semi-log plot of the data in exercise 59. Compared
to the log-log plot already constructed, does this plot kook lin-
ear? Based on this, are these data better modeled by un expo-
nential or power function?

The concentration [H') of free hydrogen ions in a chem-
jcal solution determines the solution’s pH, as defined by
pH = —log [H*]. Find.[H*] if the pH equals (a) 7, (b) § and
() 9. For each increase in pH of 1, by what factor does [H*}
change?

Gastric juice is considered an acid, with a pH of about 2.5,
Blood is considered alkaline, with i pt of about 7.5, Compure
the concentrations of hydrogen ions in the two substances (see
exercise 63).

The Richier magnitude M of an earthquake is defined in terms
of the energy £ in joules released by the earthquake, with
logq £ =44 + 1.5, Find the encrgy for earlhquakes with
magnitudes (a) 4, (b} 5 and (c) 6. For each increase in M of 1,
by what factor does F change?

It puzzies some people who have not grown up around earth-
quakes that a magnitude 6 quake is considered much more se-
vere than a magnitude 3 quake. Compare the amount of energy
released in the two quakes. (See exercise 65.)

The decibel tevel of a noise is defined in terms of the intensity
I ofthe noise, with dB = t0log (I /). Here, fy = 10712 Whn?
is the intensity of a harely audible sound. Compute the inten-
sity levels of sounds with (a) dB = 80, (b} dB =90 and ()
4B = 100. For each increase of 10 decibels, by what factor
does I change?’

At a basketball game, a éourtside decibel meter shows crowd
noises ranging trom 60 dB to 110 dB. Compare the intensity
level of the 110-dB crowd noise with that of the 60-dB noise.
{See exercise 67.) ‘

21

Use & graphing culculator to graph y = xe™, y = ve™™,

y = re~* and so on. Estimate the location of the maximum for

each. In general, state a rule for the location of the maximum
of p = xe .

In golf, the task is to hit a golf ball into a small hole. If the
ground near the hole is not flat, the golfer must judge how much
the ball's path will curve. Suppose the golfer is at the point
(—13, 0), the hole is at the point (0, 0) and the path of the ball
is,for —13 < x <0, y = —1.672x 4+ 72In {1 -+ 0.02x). Show
that the ball goes in the hole and estimate the point on the y-axis
at which the golfer aimed, '

Exercises 71-76 refex to the hyperbolie functions. ‘

71.

72,
£ 73.

I AR R A T e e A

Show that the range of the hyperbolic cosine is coshx = 1and
the range of the hyperbolic sine is the entire real line.
Show that‘cosh'2 x—sink®x =1 forall x.

The Saint Louis Gateway Arch is both 630 feet wide and
630 feet tall, (Most people think that it looks taller than

TS

N " ot

76.
77

0-60

it 1% wide.) One maodel for the owtline of the arch is
y = 757.7 = 127.7 cosh (355 for y = 0. Use a graphing cal-
culator to approximate the x- and y-intercepts and determine

if the model has the correct herizontal and. vertical measure-

- ments,

. ‘Tomodel the outline of the Gatewny Arclywith a parabola, you

can starf with y = —c(x +319)(x — 315) for some constant .
Explain why this gives the correct x-intercepts. Determing the
constant ¢ that gives a y-intercept of 630. Graph this parabola
and the hyperbolic cosine in exercise 73 on the same axes. Are
the graphs nearly identical or very diftferent? :

. Find all sohutions of sinh - 1,).= 0

Find all solutions of cosh 3y + 2) =1} |

On a'standard piano, the A below middle C produces a sound
wave with frequency 220 Lz (cycles per second). The fre-

quency of the A one octave higher is 440 Hz, In general, dou-

bling the frequency produces the same note an oclave higher.
Find an exponential formutu for the frequency f as a function
of the number of cctaves x above the A below middle C.

. There are 12 nates in an octave on'a standard piano, Middle C

. is 3 notes above A (sec exercise 77). If the notes are tuned

—

a2

Graph y -

equally, this means that middle C is a quarter-octave above A,
Use x = 1' in your formwla froni exercise 77 lo estimate the
trequency of middle C. '

EXPLORATQR‘:" EXERCISES

x? and ¥ = 2% and approximate the two positive
solutions of the equeation x% = 2% Graph y=x"and y = 3,
and approximate the two positive solutions of the equation
v3 = 3% Explain why ¥ ==« will always be a solution of
x* = g%, a > 0, What is different about the role of x =2 as a
solution of x* = 2' compared to the role of x =3 as a solu-
tion of x* = 3*?To determine the a-value at which the change
occurs, graphically solve v =« for @ =2.1,22,...;2.9,
and note that ¢ = 2.7.and ¢ = 2.8 behuve differently. Con-
tinue to narsuw down the interval of change by testing
a=72.71,2.72,...,2.79. Then guess the exact value of a.

Graph y = Inx and describe the behavior near x = 0, Then
graph y == xInx .md describe the behavior near x = 0. Re-
peat this for y = x*Inx, y =+ Inx and y = 1" Inx-for a
variety of posilive constants a. Because the tum,uon “blows

- up” atx = 0, we say that y- =% In.x has a singularity-at x = 0.

The order of the singularity at ¥ =0 of a function f(x} is
the smallest value of' @ such’that y = x* f(x) doesn’t have a
singukarity atx == 0, Determine the order of the smguhmy at
¥ = Qtor{a) f(x) = -' L) Sy =L and (©) f(x) = -L-.The

‘higher the order of the singulurity, :hc worse” the smguhnty

is. Based on your work, how bad is the singularity of y = Inx
atx =07
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@> 8.6 TRANSFORMATIONS OF FUNCTIONS

You are now familiar with a long list of functions: polynomials, rational functions, trigono-
.metric functions, exponentials and logarithms. One important goal of this course is to more
fully understand the properties of thesc functions. To & large extent, you will build your
understanding by examining a few key propertics of-functions. _
" We eéxpand on our list of functions by Lombnu% thun We bugm ina stlalghl -forward
fashion with Definition 6.1.

DEFINITION 6.1

Suppcée that f{x) and g(x) are functions with domains Dy and D, respectively. The
functions f ++y. f — gand f - g arc defined by

(f + 200 = f() + glx),
(f - ghx) = j(\)— (x)
and (f - )0 = [0 - g0,

foralt x in Dy N D; (ie., x € Dy, and x € Dy). The function i is defined by

g
SN, W)
( )(")— g(x)’

for all x in D N D, such that g(l) ;é 0.

In example 6.1, we examine various combinations of severat simple functions.

EXAMPLE 6.1 Comb:natlons of Funct:ons
If fix)=x —3 and g(x) = \/x - delcrmmu thc funcilons f + g3f —gand i
stating the domains of cach,

Solation  First, note that the domain of f"is the entire real line and the domain of g is
the setof all x > 1, Now, ' ) )

(f+ex)=x—3+ s./. X |
and Gf -9 =3 -3~ -T=3r-9-Vx -1

Notice that the domain of both{ f 4- g) and (3} —~g)is [x]x = 1} For

S J(t)ﬁ Y3
( )( 0= glx) ‘x_—.l’ ‘-

the domnn is {\11 > 1}, whme we have added the restriction x # 1 to avmd dmdmg
byO T R
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Detinition 6.1 and example 6.1 show us how to do arithmetic with funictions, An

- operation on functions that does not directly carrespond to ‘lulhmenc is the composition of

two functions.

FEFIMNITION 6.2
The composition of functions fandg, writicn f oy, is defined by
(fog)w) = flg(¥),

for ‘111 X such that v is in lhe domam of g and g(\ ) is in lhe dom‘un ofj

The composition of two functions is 4 two-slep process, as indicated in the margin
schematic, Be careful to notice what this definition is saying, In-particutar, for f(g(x)) to
be defined, you first nced g{x) to be defined, so x must be in the domain of g, Next, f
must be defined at the point g(x}, so that the number g(\) will nced to lJe in the domain

- of f.

S P

EXAMPLE 6.2 F'nd'“g the c:Omp&‘.\Sltton of Two Functions

For f(x)= x4 1 and g(x) = /x — 2, find the compaositions fog and go f and
identify the domam of each.

Sedution  First, we have
(foghx)= f(g(\))“ f(\/\ -2y
(XS = s 24 = )

I’s tempting to write that the domain of [ ogisthe entire real.line, but lovk more
carefully. Note that for x to be in the domain of g, we must have x.> 2. The domain of f

- is the whole real line, so this places no further restrictions o1 the domain of f o g. Even

though the final expression ¥ — 1 is- ([efmed for all x, thc domdm of (fog)is fxjx = 2)...
F01 the second composition,

(g0 N)X) = glf () = g + 1) o
VEr e Z2 =2 1

Il

The resulting square root reguires ¥ —t>0or|x| > 1. Since the mSldn, function f
is defined for all x, the domain of gof is{v e R||\i = 1}, which we write in interval

' notduon a8 {=00, = 1TU[1, 00). Bl o o

As you progress through the calculus, you will oflen’ find youmelf needing to n,cogmze
that a given function is a composition of simpler functions, For now, it is an 1mporlanl sklll
to practice.

VNS M SR

6.3 Ident|fymg Composmons of Functlons

DHAMPM
Identify functions f and g such that the given function canhe wrmen as (f o g)(x) for

each of () Va2 4 1, (b) (/% + 1), (c) sinx? and (d) cos? 1. Note that more than one
answer is possible for each function.

Gelntion  (a) Notice that 2 4 1 is inside the square root, Se, one choice is to have.

g(x) =22+ tand f(x) = /x.
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FIGURE 0.76a

y =t

2.

FIGURE 0.76b

y=x1+3

EXAMPLE 6.4
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(b) Here, /v -+ 1 mnsm’e the square. S0, one chOlCCJS g(0) = f+ 1and f(\)— X

(¢) The function can be rewritten as sin (x?), with x clearly msrd& the sine
function. Then, g(x) = x2 and -f (x) = sin v is one choice.

(d) The funchon as written is shorthand for (cos x)%. So, one choue is l;(\) = COS X

In general, it is quite difficult to take the graphs of f(x) and g(x) and produce the graph
of f(g{x)). If one of the functions f and g is linear, however, there is a simplc graphical
procedure for graphing the composition. Such linear trdnsfm mations are.explored in the
remainder of this section. :

The first case is to take the graph of f(x) and produce the graph of f{x) + ¢ for some

-constant ¢, You should be able to deduce the gencml result from example 6.4.

Verttcal Translation of a Graph

Graphy = xZand y = x? + 3; comp’m and contmst the gmphs

Solution  You can probably sketch these by h:md-. You should get graphs like thosé in
Figures 0.76a and 0.76b. Both figures show parabolas opening upward. The main obvious
difference is that x2 has a y-intercept of 0 and X2 + 3 has a y-intercept of 3. In fact, for
any given value of x, the point on the graph of y = ¥2 -+ 3 will be plotted exactly 3 units
higher than the corresponding point on the graph of y = v This is shown in Figure 0.77a.

In Figure 0.77b, the two graphs are shown oh the same set ol axes. To many people,
it does not look like the top graph is the same as the bottom graph moved up 3 units.

y ¥
F-5 F
251 : '
Move graph : .
up-3 units ¢ '
//
!
H
e
t—t——1—x
2 4

FIGURE 0.77a
Translate graph up

-FIGURE 0.77b
y=xland y=x?+3

This is an wifortunate optical illusion. Humans usnally mentally judge distance between
curves as the shortest distance between the curves. For these parabolas, the shortest
distance is vertical at v = 0 but becomes increasingly horizental a5 you move away
from the y-axis, The distance of 3 between the parabolas is measured vertically, 5]

In general, the graph of ¥y = f(x) +cis the same as the graph of f{x) shifted up (if
¢ > 0) or down (if ¢ < 0) by |c| units. We usualty refer to .f(.\') + ¢ as a vertical -
¢ translation (up or down, by ic| units). '
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¥ - Movegraphto
the right one unit

—|—-+—+—+\Auf—i—|—e—|—v X
-4 -2 2 4

FIGURE 0.7%
Transtation to the right

Tn example 6.5, we explore what happens if a constant is added to x.

A Hortzontal Transiatlon

Couipare atd contrast the eraphs of y = x% and y = (v — 1)%
p 7 phs ¢

Solution  The graphs are shown in Figures 0.78a and 0.78b, reSpeclively.

+ L
; ST
/ Y
/ L8t
! \
\ el
4_.
: FANT N T e N
4 24 SR R 2 4
FIGURE 0.78a " FIGURE 0.78b

y =2 yo=(x — )

Notice that the graph of y = (x - 1)* appears to be the same as the graph of y = x?,
except that it is shifted 1 unit to the right. This should make sense for the following .
reason, Pick a value of x, say, v = 13. The value ol (x — Dlatx=13is 122, the same
as the valee of x2 at x = 12, I unit to the left. Obscrve that this same pattern holds-
for any x you choose. A simullancous plot of the two functions (scc hg,un, 0. 79) shows_
this, B e e

In general, for ¢ = 0O, the graph of y = f{x — ¢)is the same as the graph of
y = f(x) shifted ¢ units to the right. Likewise (again, for ¢ > 0), you get the graph of
JS(x +¢) by moving the graph of y = f(x) to the lell ¢ units, We usually refer to
. flx —¢yand f(x - ¢) as horizontal (ranslations (to the right and left, respectively,
" by ¢ units), :

To avoid confusion on which way to translate the graph of y = f(x), focus on what
makes the argument (the quantity inside the parentheses) zero, For f(x), thisis:x = 0, but
for f(x — ¢) you must have v = ¢ to get f(0) fi.e, the same y-value as” f(x) when v = 0].
"This says that the point on the graph of y = f{x) at v = 0 corresponds to the point on the

graphofy= f(x —qalx =¢.

Comparmg Vertical and Honzonta[ Transfatlons _ ;

Given the graph of y = f(x) shown in Figure 0.80a, sketch l]le graphs of y = f(t) -
'md y= flx - 2).

Solutions To graphy = f{v) — 2 simply translalc"ll'.'c_ origina[ 'graph down 2 units,’
as shown in Figure 0.80b. To graph y = f(v — 2), simply translate the original graph to
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the right 2 units (so that the x-intercept at ¥ = 0 in'the original graph corresponds to
an x-intercept at x = 2 in the transtated graph), as scen in Figure 0.80¢. :

¥ v y
& 4 h
15+ _ 15+ 15+
10 / : 164 / 107
st / 5 / RS
e A T - . B VAt .
-3 BN S S T -3 -27-0 1 203 . -1 12374 5 -
ST PR | A4
=104 ST : - S /
—-15+ / ~-151 ' A5t
FIGURE 0.80a . FIGURE 0.80b FIGURE 0.80c¢
y = fix} y=f{x)-=2 y=flx -2}
- - : ]
Example 6.7 explores the effect of .mullip]ying or dividing x or y-by a constant.
' Comparing' Some Related Graphs
Compare and contrast the graphs of y = x? — 1y = 4(x? —Dand ); = (dx)y? —1..
Selution  The first two graphs are'shown in Figures 0.81a and 0.81b, respectively,
¥ ¥ ¥
Iy 4
10+ a0+ Y
g 324 8
| \ 1 /
i ,
41 T Y / /o
; T Sy=x20
\ T \ 5T 1 } \ - /){ ‘: >
N AR CN, AR S I
-3 -2 123 -3 2 I~ 2 3 ' \
_2ﬁ7 _S.,,. .

FIGURE 0.81a

)':.rl—l

Figure 0.81b is four times as large, reflecting the multiptication of the original function
by 4. The effect looks different when the lunctions are plotted on the same scale, as in

FIGURE 0.81¢c
y=x2—Tlandy = 4{x? —.1)

FIGURE 0.81b
y=a07 =

These graphs leok identical until you compare the scates on the v-axes. The scale in

Figure 0.81c. Here, the parabola y = 4(x™ - 1) looks thinner and has a different

y-intercept. Note that the x-intercepts remain the same, (Why would that be?)
The graphs of y = 1% — L and y = (4x)* — 1 are shown in Figures 0.82a and

0.82b, respectively. ' N ‘ :
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FIGURE 0.82a
y=xi-1
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FIGURE 0.83a

y=1X
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FIGURE 0.83b
y o= 2y -3

- When plotted on the same set of axes (as in Figure 0.82¢), the parabola y =
- looks thinner. Here, the x-intercepts are diftercnt, but lhc y-intercepts are’the

- shifting the graph down by 3 units (sec the graphs in Figures_ 0.83a and 0.83b).
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FIGURE 0.82¢ -
y=at— lund p = 4x)? — |

FIGURE 0.82b
y=(dr) — 1

Can you spoi the difference here? In this case, the x-scale has now changed, by thi same
factor of 4 as in the function. To see this, note that substituting x = 1/4.nto (4xy -1
produces (1)? — 1, exactly the same as substituting v = 1 nto the original function.
(41)2 =1

same, i S e

We can generalize the observations made in example 6.7. Before reading our explana-
Lion, try to state a general rule for yoursel. How are the graphs of the functions ¢f(x) :md
flex)related to the graph of y = f(x)?

Based on example 6.7, notice that to obtain a somph of y = cf(x) for some constant
¢ > 0, you can take the graph of y = f(x} and mulliply the scale on the y-axis by ¢. To
obtain a graph of y = f(ex) for some constant ¢ > 0, you can take the graph of v = f{x)

- and multiply the scale on the x-axis by 1/c.

These basic rules can be combined to understand more comphc'\tcd graphs

EXAMPLE 6.8 A Translation and a Stretching
Describe how to get the graph of y = 2x* — 3 fromy the graph of y = x2,

sobition  You can get from x% 1o 2x® - 3 by multiplying by 2 and then subtracting 3.
In terms of the graph, this has the effect of multiplying the y-scale by 2 and then

}‘;AMPLQ 6.9 A Translation in Both x- and y D;rectlons
Describe how to get the graph of y = v 4 4x + 3 from {hc graph of ¥ = X2

Sofution We can again relate this (and the graph of every quadratic) to the graph of
y = x%. We must first complete the square. Recall that in this process, you take the
cocfficient of x (4), divide by 2 (4/2 = 2) and square the resull (2% = 4). Add and
subtract this number and then, rewrite the x-terms as d perfect square. We have,

y=xlhdv 3=+ +4) -4+ 3=(r+2 - 1.
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To graph this function, take the parabola y = x% (sec Figure 0.84a}‘a1_ad tranﬁate'the
graph 2 units to the leftand 1 unit down {see Figure (,84b).

\!

R

o b X

:—Ll‘—l—:g-"i'}“-ﬁitfé—i—!;—bt B R e EX
FIGURE 0.84a © . FIGURE 0.84b

y = x? : ya=+ 20—

W

The following table summarizes our discoveries in this section, -

Transformations of - f (.x)

“Transformation - -} Form | Effecton Graph . 0 c
Vertical translation fi+e . le] unhs up (c > O)yordown (¢ < Q)
Horizonta! translation | f(x -+ ¢) |c] wnits left {¢ > 0) or cight (¢ < 0}
Yertical scale cf(x){e = 0) multiply vertical scale by ¢
Horizontal scaie j'fn‘.\')((' = () divide horizontal scale by ¢

You will explore additional transformations in the exercises. '

EXERCISES 0.6 G))
L

) WRITING EXERCISES

1. The restricted domain of example 6.2 may be puzzling, Con- 3, As illustrated in example 6.9, completing the square can

sider the tollowing analogy. Suppose you have an airplanc _be used 1o rewrite any quadratic function in the form
flight from New York to Los Angeles with a stop for refueling in a(x — d)? + e. Using the transformation rules in thig section,
Minneapolis. If bad weather has closed the airport in Minnea- exphiin why this means that all parabolas (with a > 0) will
polis, explain why your flight will be canceled {or at least re- * look essentially the same. ’

routed) even if the weather is great in New York and Los Angeles.

4, Hxplain why the graph of y = f(x -+ 4) is obtained by moving
2, Explain why the graphs of ¥y = 4(x? — D and y = (4x¥ — 1. the graph of ¥y = f{x) four units to the left, instead of to the
in Figures 0.81c¢ and 0.82¢ appear “thinner” than the graph of right. . ‘

y=xt-1
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In exercises 1-6, find the mmposul:ons fog 'md go f,and
identify their respective domains.

L f=s+1, gv=vi—3
2 () =x~2 gln)=Vitl
3ofir)y=¢", glx)=Ihk

d, f()=V1—x, glxy=Inx
8, fLy=x*+1; glx)=sinx
6. flx)= Tlfl gy =27 =2

In exercises 7-16, identify functions fx) and g(x) such that the
given function equals (fo g}(.t').‘

yARVLTETN B R 2 ) Ea
. X5
1
10, = +1 1L @x+1P+3 12 4+ 1) 43
X
13, sinx  dosinad 15, ¢U*l 16, et

Ii: exercises 17-22, identify functions f(x), g(s) and h{x) such
that the given function equals [ fo{goh)] {x).
3 )

17, — 18, Ve i
Jsinx +2 ) L ’
19, cos’(4x —2) 20, Inv/x? 41
2. 4e® -5 22, Jran '3y + D

In exercises 23-30, use the graph of') = fix)givenintbe ﬁgul ¢
to graph the indicated function.

23, f(x)—3 24, flx+2) 25, f(x-3)
26, f(x)+2 27, F(2x) 28, 31(x)
29, 4f(x)—1 30, 3f(x +2)

In exercises 31-38, use the graph of ¥ = f(x) given in the figure
to graph the indicated function,

3L flx —4) 32, fx+ 3 33 f(2x0)
34, f(2x — 4 35, f(3x +3) - 36, 31(0)
I 2f(x)—4 '

38, 3f(x) +3
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In exercises 39-dd, complete flie square and explain how to '
transform the graph ol‘ y= 13 into the graph of the given
function, .

39, fOy=a2i2c41
41, fxy=x"+2x 4 4
43, fix) =252 4 dx -4

A0 [ = de 4
42, S =x* —4x 42
A4, fl) = 3.\-2 -6y 42

{Eﬂ Tu exercises 45— 48 gmph the given func!mn and compare to lhe

graphofy = ¥ -1,

45, fx)y= —2(.\"_ — 1}‘
6. flxy=-3G7—1)

47, f) = =3 - 1742
48, f(v)= 20—~ 1

H-a It exercises 49-82, g "I])Il the gn en function and comtpare to the

graphofy = (v — 1) — 1 = x? — 21.

49, flx) = (-2 - 2{-—\)

50, flxy=(—2x) — (—2%)

51, f(x) = (-x) = 2-x) o+ |

52 f(x) = (—3x)* — 2(-3x) — 3

53, Based on exm'ciseé 45448, state a rule for transforming the
graph of y = f(x) into the graph of y = ¢f(x) fore < 0,

54,

Based on exercises 49.—52,'.state a nule for'tmnsforming the
graph of ¥ = f(x) into the graphrof y = flex)fore < 0.

35, Sketch the graph of y ='[v|*. Explain why the graph of
y = &P is identical to that of y = x* 1o the right of the
y-axis. For y = x|, describe how the graph to the left of
the y-axis compares to the graph 1o the right of the y-axis, In

~ general, describe how to draw the graph of ¥y = f{ix]) given
the graph of y = f(x}.

56. For y = x%, dcscnl}c how the graph to the left of the y-axis
. compares {0 the graph 1o the right of the y-axis. Show that
“for f(x) = x*, we have f{—x) = —f(x).In general, if you
" have the graph of y = f(x) to the right uf the y-axis and
F(—x) = —f(x) for all x, descrlbe how to gr'lph y =.f{x)

to the left of the y-axis.
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5T,

o] s8.

59,

") 60,
61

] 62.

Iterations of functions ar¢ important in a variety of up-
plications. To iterate f(x), start with an initial value xu
and compute x| = Flxod v = f{x) x3= f(xp) und so
on. For example, with_f(x) = cosx and xg = 1, the iter-
ates are v, =cos [ ~ 0.54, x, = cos .'c'l ~ cos (L5354 ~ 0.56,

a3 = cos0.86 = 0.65 and so on. Keep computing iterates and

show that they get:closer and closer to 0.739085. Then pick
your own xp (any number you fike) and show that the iterates
with this new x, also converge to 0.739085.

Referring lo exercise 57, show that the iterates of a function can
be written as x; = fxph xa = f(f (o)) X3 = fF(S(xa)))
anck so on. Graph y = cos(cosx), y = cos {cos (cosx)) and
y = cos (cos {cos (cos x)}). The graphs should look more and
more like a horizontal line. Use the resuit of exercise 57 to
identify the limiting fine.

Compute several iterates of f(x) = sinx (see exercise 57) with
a variety of starting values. What happens to the iterates in the
long run?

Repeat exercise 59 for f(x) = 2

In cases where the iterates of a function (see exercise 57)
repeal a single munber, that number is cafled a fixed point.
Explain why any fixed point. must. be a solution of the equa-
tion f{x) = x. Find all {ixed points of f{x) = cosx by solv-

ing the equation cosx = x. Compare your results to that of

exercise 57.

Find all fixed points of f(x) = sinx (see exercise 61). Com-
pare your results 1o those of exercise 59,

EXPLORATORY EXERCISES

Yeu have explored how completing the square can transform
any quadratic function into the form y = alx - d) 4-e. We

e o T e camnin & 5 T

) WRITING EXERCISES

The

following list inclizdes ferms that are defined and theorems

that are stated in this chapter. For each term or theorem, (1) give
a precise definition or staterment, (2} state in general terms what it
means gnd (3) describe the types of problems with which it is asso-
ciated.

Slope of a line
Domain
Graphing window
Inverse Rmction
Sine tunction

€
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concluded that all parabolas with o = & look alike. To see that
the same statement is not true af cubic polynomials, graph
y=2x? and y == x* — 3. In this exercise, you will use com-
pletinig the cube to determine how many different cubic graphs
there are. To see what “completing the cabe” would took like,
first show that {x +a)’ = ._a:“ +3ax? + 3ax + &' Use this
resull to transform the graph of y. = % into the. graphs of
(@) y=x' =32 53— Land (b) y = x> —3x2 4 3x 42,
Show that you can’t- get a simple tran'sforirmion )
y==x*—3x2+4x -2, However, show that y =37 —3x 2pdy—2

can be obtained from y =x’+ v by basic transforma-
tioxns, Show that the following statement is true: any cubic

(y= ax® + by’ +ex + d) can be obtained with basic: trans-

mrm.mons from y = a\ ¥ 4 kx for some constant &,

In many applications, it is important to take a section of a
araph {e.g., some data) und extend it for predictions or other
analysis. For exanple, suppose you have an'electronic signal
equal to f{x} = 2x for 0 < x = 2. To predict the value of the

signal at x = =1, you would want to know whether the signal

was periadic. If the signal is periodiv, explain why f{—1)=2
woutld be a good prediction. In some applications, you would
assume that the function is even, ‘Thatis;, f(x) = f(—x)forall
v, Inthis case, you wanl I(\) =2—x)= —2vtor—2 <x <k
—2x if—2<x <0

Iy D=y <=2
Findtheevenextension for (@) f(x) = x> + 2y 4- L0 <y <2
and (b) fix)=e ", 0<x <2,

Graph the even mremmn_ )=

Similar to the even extcnsio:'\_ discussed in exploratory exer-
cise 2, applications_sometimes require a function o be edd;
that is, f(—x) = — f(x) Far f(x) =32, 0 <x <2, the add
extenssion requires that for —2 < v <0, f(x) = —f(—x) =
4 -2 if—2<x=<0

—(—x)* = —¥*sothat f{x) : (.‘2 Cif0<x<2 . Graph
y = f(x)and discuss how to graphically rotate the right half of
the graph to get (hb.lbft half of the graph. Find the odd extension
for (o) f()=x?+20, 0<x <2and (b} f(x) =e~F —1,
O0=<xy=2

AR E g e A

Perpendicular lines
Zeros of u function
Verlical asymptote
Periodic function
Arcsine function
Logarithm

- Parallel lines
Intercepls
Lacal maximum
‘One-to-ong function
Cosine function
Exponential function

-Composition




