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CHAPTER 1 =»

il

Lirnits and Continuity

A BRIEF PREVIEW OF CALCULUS: TANGENT I.INES

AND THE LENGTH OF A CURVE

FIGURE 1.3
y= 41

In this section, we approach the boundary between precalculus mathematics and the calculus
by investigating severat important problems requiring the use of calculus, Recall that the

. slope of a straight line is the change in y divided by the change in x. This fraction is the

same regardless of which two points you use 1o compute the slope. For example, the points

' (0 1, (1, 4, and (3, 10) all tie on the line y = 3x + l The ilopc of3 can be obtmncd hcm
. any two of the points. For instance,:

-1 . S _
mﬁl—:—O—B or n o= 3~_.—0‘.-3.,

In the calculus, we generalize this problem to find the slope of a curve ata point. For
instance, suppose we wanted Lo find the stope of the curve y = 37 -+ L atthe point (1, 2). You
might think of picking a second point oni the parabola, say (2, 5). The slope of the line through

. these two points (called a secant line; see Figure 1.2a) is easy enough to'compute. We have

52

Mg = ———— = 3,

2—1

. However, using the pomts (0, Iy and (I, 2), we get a differeit slope (sec Flgme 1.2h):

21
Mo = - = 1,-

1-0

FIGURE |.2a
Secaat ling, slope =3

FIGURE }.2b
Secant line, slope = |

For curves other than slmag,ht lines, the slopes of secant lines joining different points are
gencrally nof the same, as seen in Figures 1.2a and 1.2b.
If you get different slopes using different pairs of points, then what cx_aClly does it mean

. fora curve to have a slope at a point? The answer can be visisalized by graphically zooming

in on the specified point. Take the graph of y = +* - | and zoom in tight on the point
(1, 2). You should get a graph eomethmg like the otie in Figure 1.3. The graph looks very
much like a straight line, In fact, the more you zoom in, the straighter the curve appears

10 be and the less it matters which two points are used to compute a slope. So, here’s the

strategy: pick several points on the parabola, each closerto the point (1, 2) than (he previous
one. Compule the slopes of the lines through (1, 2) and each of the points. The closer the
second point gets to (1, 2, the closer the computed slope is Lo the answer you seek,




the secant lines joining those points with (1, 2). (We showed sample secant lines in
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For example, the point (1.5, 3.25) is on the ]‘}_ﬂrgbnlu'fﬂik'ly close to (1, 2). The slope of
the line joining these points is

3252
25,
51 :

Moo =

The point (1.1, 2. 21) is even closer to (1, 2). The QIOPB Of the secant lme ‘]Ollllﬂb these two
pomts is .

221 -2
soe = ——— = 2.1
Wee o1 i

Continuing in this way, obscrve that the poml {1.01, 2. 0201) is closer yel to lhe point
(1,2). The slope of the secant lines through these points is

2.0201 - 2
1.01 -1

Mgee = =2.01.

The slopes of the secant lines (2.5, 2.1, 2.01) are getting closer and closer to the slope of
the parabola at the point (I, 2). Based on these miculalmns it seems re‘lsonable to say that
the slope of the curve is approximately 2.

Example 1.1 takes our introductory example just a bit further,

R RN et B ST, 47w mem

EXAMPLE 1.1 Estimating the Slope of a Curve

Estimate the slopc of y = x? -+ latx = 1.
fiolution 'We focus on the point whose coordinatés are v = | and y = 231=2.To

estimate the slope, choose a sequence of points riear (1, 2) and compuge the slopes of

Figures 1.2a and 1.2b.) Choosing points with ¥ > [ (x-values of 2, 1.1 and'1.01) and
points with \ < 1 (x-values of 0, 0.9 and 0.99), we compute the concspondmg ¥- \"’ilUCS
using y = x2 4+ I and get the slopes shown in the following tab!e

Second Point | i " Second Point e

@,5) %:’3 D %}—f:l‘
(1.1,2.21) %:2.1 | 0.9, 1.81) | .'%ETZ= 1.9
(1.01,2.0201) 3'—33?:2 =201 go..99;_1.9so_1) '% = 1.99

Observe that in both columns, as the secoﬁd poim gets closer to (1, 2), the slope of
the secant line gets Closel 02 A xc'zsonablu estimate of the slope of the curve at the

point (1, ) isthen 2, = ___

In Chapter 2, we develop a powerful technique for computing such slopes exactly
(and easily). Note what distinguishes the calewlus problem from the corvesponding atgebra
problem. The calculus problem involves a process we call a limir. While we presently can
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FIGURE |.5a
y= s 1y

- secant lines j Jjoining those pomlb wnh (0,0). The foilowmg table qhows one set-of

-computing the slope exactly, this is consistent with the graph of y = sin.v in Figure 1.4,
Note that near (0, 0), the graph resembles that of y = x, a straight line of slope 1, #

only estnmle the slope of a curve usmg a sequence of 'qppm\umuons ih(_ limit ullows us
to Lomputc the slope exactly, . S

; 3¢ f\Mf‘L 1z 1 .}. Estlmatmg the Slope ofa Cuwe
Estimate the slope of y = sinx at x =0

Solution  This turns out to be a very important problem, one that we' will return to
later. For now, choose a sequence of points near (0, 0) and compute the slopes of the

choices.
IIES(ZL‘CCIHII_(.{ Pﬁirr!: mm i Sewml P(;il;lflfi i '--m_s;; NS
A, sin 1) 0.84147 (=1,sin(—1) 1 084147
(01,50 0.1} ,99833 (~0.1, sin(--0.1) 0.99833
(0.01,s5in0.01) | 099998 1 (001, sin(—0.01) | 0959998

Note that as the second poing gets closer and closer to (0, 0), the stope of the secant line
(i) appears to get closer and closer to 1. A good estimale of the slope of the curve at
the point (0, O) would then appear to be 1. Although we presently have no way of

A second problem requiring the power of calcutus is that of computing distance along
a curved path, While this problem is of less significance than our first example (both
historically and in the development of the calculus), it provides a good indication of the need
for mathematics beyond simple algebra, You should pay special attention to the similarities
between the development of this problem and our earlier work with slope. ‘

Recall that the (siraight-line) distance between (wo points (_'1'1 L) and {xa, y) is

df(xi, 31} (x20 32)) = V(0 — -1.'1),2 + ()'é R

For instance, the distunce between the points (0, 1 ) and (3, 4) is

d{(0, 1), 3, M} = V(3 = 00 + (4 — 1)? = 32 ~ 424264,

However, this is not the only way we might want to compute the distance between these
two points. For example, suppose that you needed 1o drive a car from (0, 1) to (3, 4) along
a road that follows the curve y = (x — 1)? (sce Figure 1.5a). In this case, you don’t care
about the straight-line distance connecting the two points, but only about how far you must
drive along the curve (the length of the curve or arc length).

Notice that the distance along the curve must be greater than Bf 2 (the str'ught line
distance). Taking a cue from the slope problem, we ¢an formulate a strategy for obtaining
a sequence of increasingly accurate approximations. Instead of using just one line segment
to get the approximation of 3+/2, we could use two line segments, as in‘Figure 1.5b. Notice
that the sum of the lengths of the two line segmenls appears to be a much better approxi-
madion o the actual length of the curve than the straighi- lmc distance used previously. This




‘No. of Segmnents | Distance -
1 424264
2 571592
3 5.99070
4 603562
5 6.06906
6 6.08713
7 609711
¥
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FIGURE I,6a
Approximating the curve with two
line segments
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“Twao line segments ““Fhree line segments

distance is

dy = d{(0, 1,(1.5,025)) +d((1.5,025),3,4))
= L5071+ (025 - D+ VB~ 157 +(d— 0257 ~ 571592,

You're probably way ahead of us by now. [ approximating the length of the curve
with two line segments gives an improved approximation, why not use three or four or
more? Using the three tine segments indicaled in Figure 1.5¢, we get the further improved
approximation ' o

ds = d(0, 1), (1D} + dI(1,0), @, V) 4 d12 D, G, )
=V~ 02+ O~ 2+ — P40 — 02+ /B =27 + @17
=242 4+ V10 &~ 599070, :

Note that the more line segments we use, the better the approximation appears to be,
This process will become much less tedious with the development of the definite integral in
Chapter 4. For now we list a number of these successively betler approximations (produced
using points on the curve with evenly spaced x-coordinates) in the table found in the mar-
gin. The table suggests that the length of the curve is approximately 6.1 (quite far from the

straight-line distance ol 4.2). IT we continued this process using more and more line seg-

ments, the sum of their lengths would approach the actual length of the curve (about 6.126).
Asinthe problem of computing the slope of a curve, the exact arc length is obtained as a limit.

bR R TR
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1.4 E;mating the Arc Leﬁgth of a Curv;,

Estimate the arc jength of the curve y = sinx for 0 < ¥ < 7 (see Figure |.6a).

Solution The endpoints of the curve on this interval are (0, 0) and (7, 0). The distance
between these points is ¢} = . The point on the graph of y = sinx corresponding to
the midpoint of the interval |0, ] is (;r/2, 1). The distance from (0, 0) to (;r/2, 1) plus
the distance from (;r/2, 1) to (i, 0) (illustiated in Figuré 1.6a) is

= (%)2 +1 %\/(%)2 1 m 3..'7'242.
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y Using the five points (0, 0), (/4, 1/v/2), (r/2, 1), G /4, t/V3), and (7, 0) (i.c., four
line segments, as indicated in Figure 1.6b), the sum of the lengths ot these tine segments is

\-f\ﬁisin.\‘ . ) e o
N S [rmnz 1 N2 132
' . ' dy=2 (~ +o+2 (ﬂ) (l — *H) = 3.7901.
ey IRES \[4 U T
Usmg nine points (i.c., eight line segments), you nccd # good caiculator ’md some

\ palicnce to compute the distance of 3.8125. A wble showing further app:ommtmm is
»x givenin the margin, Atthis stage, it would be reasonable to cslnm(e the lenglh of the

3 17" i . sine curve on the inter val [0, 7] as shghtly more than 3 8. e B et g e
FIGURE i.6b S ' ' h
Appro.xlmafmgﬂu; curve with B EYON D FORMULAS

four line segments - . . .
In'the process of estimating both the slope of & curve and the length of a curve, we
make some reasonably obvious (straight-line) approximations and then systematically -

Numnber "f Sum of - - improve on those approximations. In each case, the shorter the line segments are, (he -
Line S"g’"e"“ Lengths. closer the approximations are to the desired value. The essence of this is the concept of
8 3.8125 limit, which separates precalculus mathematics from the calculus.) At first glance, this
16 3.8183 limit idea might seem of little practical importance, since in our examples we never
32 3.8197 compule the exact solution. In the chapters to come, wc"wil_l ﬁ'nd—remm‘kably simple
64 3.8201 . shiortcuts to exactanswers, Can you think of ways to find the exact slope inexampte 1.1?

EXERCISES 1 (D)

) WRITING EXERCISES

1. Explain why each approximation of ar¢ tength in example 1.3 - 9 f(xy=e'a=0 10 fl)=eta=1
is less than the acteal arc length. ' ' - T o ‘
o ] 1L, f(.\;) = In_r,(r =1 - : 12. fy=Inxy,a=12

2. To estimate the slope of fly=x"+1 at x =1, you - '
would compute the slopes of various secant lines. Note that
y = x2 4 | curves up, Explain why the secant line connecting
(1, 2y and (1.1, 2.21) will have slope greater than the slope
of the tangent line. Discuss how the stope of the secant line
between (1, 2) and (0.9, 1. Sl) compares to the slope of the

tangent line. ‘ 13 fy=2241,0< - <2

H In exercises 13—20 estimafe llw length of the curve v = f(l) on
the given interval using (a) # = 4 and () n = 8 line segments,
(c) If you can program a calculator or computer, use larger n's
and conjeciure the acfual length of the curve.

id. f(-“)=.1']_+2,05_\-‘5_ I
1s. -f("i) —cosy,0<x <7/2
16, flx)= Sln\ 0<x<mf2
17, fix)y = NEEN RN <xs 3

1 In exercises l-IZ,Iesli'mate the slope (as' in examiple 1.1} of
Ty=fatx=a

L f)=x"+1la=1 2, f)=x"4+la=2

. flx)= =0 . flo) = X, a = ' .
3. f{x)=-cosx,a 4, flx)=cosx,a =m/2 8. flx)= /el <x <2

5. flvy=x"+2a=1 6 flx)=x"+2,a=2 19, flay=x"+1,-25x52
7. fixy=Vx+l.a=0 8 Jx)=+vx+lLa=3 200 f{x}= a? +2,~1gx <1
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21, An imporli_mt problem in calculus is finding the area of a re-

22

23,

24

gion, Sketch the parabola y = 1 — x? and shade in the region
above the x-axis between & = —1| and x = 1, Then sketch in
the following rectangles: (1) height f(—32) and width § ex-
tending fromx = —ltox = —.%. (2) height f{— 41) and width
—itox ': 0. (3) height f(%) and width
1 extending from x = Oto x =1 Dheight F(3 3y and width L
extending from v = 3 ltox =1. Compute the sum of the areas
of the rectangles. Ihsed on your sketch, does this give you a
good approximation of the area under the parabola?

i 7 extending fromx =

“Fo improve the approximation of exercise 21, divide the inter-
val {—1, t] into 8 picces and construet a rectangle of the appro-
priate height on each subintesval. Compared to the approxima-
tion in exercise 21, explain why you would expect this to be a
better approximation of the actual area under the parabola,

Use a computer or caleulator to compute an approximation of
the area in exercise 21 using (a) 16 rectangles, {(b) 32 rectan-
gles, {c) 6 rectangles, Use these calculations to conjecture the
exact value of the area under the parabola,

Use the technique of exercises 21-23 to estimate the area below
y = sinx and above the x-axis betweenx =0 and x = 7.

Use the technique of exercises 21-23 to estimate the area
below y = x? and above the x-axis between x = Oand x = 1.

26.
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Use the technique of exercises 21-23 to estimate the area
below y = x* and ibove the x-axis between x = Oandx = 2,

EXPLORATORY EXERCISE

Several central concepts of c‘tiuulus havc been mtmduced in

“this section, An important aspect of our future development

of calculus is to derive simple techiniques for computing quan-
tities such as slope and arc length. .In this exercise, you will
learn how to directly compute the stope of a curve'at a point.
Suppose you want the slope of y = ¥ at.x = 1, Youcould start
by computing sfopes of secant lines connecting the point (1, 1)
with nearby points. Suppose the nearby point has x-coordinate
1 -+ h, where i is 4 small {pusitive or negative) number. Ex-
plain why the corresponding y-coordinate is (1 + h)%. Show
L+ =t
e =2 4 11 AS
F+h—1 .
I gets closer and closer to @, this slope betier approximates
the stope of the tangent line. Letting A approach 0, show that
the slope of the tani,cnt line equals 2. In a similar way, show
that the slope of y = 2% atx = 2 is 4 and find the slope of
y = x2utx = 3. Based on your answers, conjecture a formula
for the stope of v’ = x? at x = a, for any unspecified value
ofa.-

that the slope of the secant line is

B R LR Lo

@)a} THE CONCEPT OF LIMIT

In this section, we develop the notion of limit using some common language and illustrate
the idea with some simple examples. The notion turns out to be a rather subtle one, easy
10 think of intuitively, but a bit harder to pin down in precise terms. We present the precise
definition of limit in section 1.6. There, we carcfully define limits in considerable detail.
The more informal notion of limit that we introduce and work with here and in secuons 1.3,
1.4 and 1.5 is adequate for most purposes.

As a start, consider the functions

2 2
flxy= i and gy} = ij
X - x—2

Notice that both functions aré undefined at v = 2. So, whal does this niean, beyond
saying that you cannot substitute 2 for x? We often find important ¢lues about the behavior
of a function from a graph (sec Figures 1.7a and 1.7b).

Notice that the graphs of these two functions look quite difterent in the wumty of
¥ = 2. Although we can’t say anything about the value of these functions at x = 2 {since
this is owtside the domain of both functions), we canexamine their behavior in the vicinity of
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2L,

22

23

24,

25,

An important problem in calculus-is finding the area of a re-
gion, Sketch the parabola y = | — x? and shade in the region
above the x-axis between x == — 1 and x = 1. Then sketch in
the following rectangles: (1) height f(ﬁf}) and width § ex-

lending fromy = —110 x = —-%. (2) height f(—%) and width
) 3 extending from x = -—— tox = 0. (3) height f( ) and width
3 L extending from x = Oto X = 2 {4) height f( Yand Wld[h

extending from x = — tox = 1. Cornpute the sum of the ‘l[‘L.l‘:

of the rect.mgh,s qued on your sketch, does this give you a
good approximation of the area under the parabola?

To improve the approximation of exercise 21, divide the inter-
val [—1, 1] into § pieces and construct a rectangle of the appro-
priate height on each sebinterval. Compared to the approxima-
tion in exercise 21, explain why you would expect this to be a
better approximation of the actual area under the parabola.

Use 4 computer or calculator o compute an approXimation of

the area in exercise 21 using {a) i6 rectangles, (b) 32 rectan-
gles, () 64 rectangles. Use these calculations to conjecture the
exact valee of the area under the parabola.

Use the techniqtie of exercises 2 1-23 to estimate the area below
v = sinx and above the x-axis betweenx =0 and x = .

Use the technique of exercises 21-23 to estimate the area
below y = x? and above the x-axis between v = Qandx = L.

26.
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Use the technigue of exer,éises 21-23 to estimate the area

below y = &% and above the x-axis betweenx = Oand x = 2.

EXPLORATORY EXERCISE

. Several central 'contepl_s of caleulus have bees introduced in

this section. An important aspect of cur fulyre development
of calculus is to derive simple techniques for computing quan-
tities such as slope and arc length. In this exercise, you will
learn how to directly compute the slope of a-curve at a point.
Suppose you want the slope of y = 17 atx =1 . You could start
by computing slopes of secant lines connecting the point (1, 1}
with nearby points. Suppose the nearby point has x-coordinate
1+ h, where i is a small {positive or negative) number. Ex-
plain why the corresponding y-coordinate is (1 1+ h)*. Show

Ay~
that the stope of the secunt line is (ﬁrl_ﬁ;'r)“*lﬁ =24 As
T —

h gets closer and closer to 0, this slope better, approximates
the slope of the tangent line. Letting /i approach 0, show that
-the slope.of the tangent line equals 2, In a similar-way, show
that the‘ slope of y = x2'at x =2 is.4 and find the slope of
vy =x?atx = 3. Based on your answers, conjecture a formula
for the skope of y= x? at x = a, for any unspecified value
of a.

R e G

\. 1.2 THE CONCEPT OF LIMIT
@) 1 T con

- FIGURE |.7a
-4
x—2

y‘__:

In this section, we develop the notion of limit using some common language and iHlustrate
the idea with some simple examples. The notion lurns out {0 be a rather subtle one, casy
Lo think of intuitively, but a bit harder to pin down in precise lerms. We present the precise
definition of limit in section 1.6, There, we carefulty define limits in considerable detail.
The more informal notion of limit that we introduce and work with here and in su:tlons 1.3,

14 and 1.5 is adequate for most purposcs.

As a stari, consider the functions

._-2 —4 ) ‘.2 _5
fx)y = L0 and gl)= - :
x—2 - R

Notice that both funclions are undefined at x = 2. So,:whal does this mean, beyond
saying that you cannot substitute 2 for x? We oflen find important clues about the beh'mor
of a function from a graph (see Figures 1.7a and 1.7b). - :

Notice that the graphs of these two functions look quite dnﬂclcnt in the vicinity of

x = 2. Although we can’t say anything about the value of these funclions at v = 2 (since

this is outside the domain of both functions), we can examine their behavior in the vicinity of
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3 ) this point. We consider these functions one st a time. First, for f{x) = - ,we compu'le
1 : . . X —
‘ 1o J -~ ~some valtues of the function for v close to 2, as in the following tables. :
5t/ / : :
A :
+ } 4 > X , g . e
-10 : is 10 . S I : RS PR \—-4
/ 51 % R f(\)j 3 : X f(r) oy
—ta+ ¢ 19 39 . : 2.t 4.1
: . 1.99 3.99 . 201 4.01
FIGURE I.7b : 1.999 3999 . 2.001 4.001
125 1.9999 | - 3.9999 ’ 20001 | 4.000)
Yo ' -
x=2

Notice that as you move down the first column of the mbk,, the x-values get cioser 02,

" butare all less than 2, We use the notation x — 27 to indicate that x approaches 2 from the

left side. Notice thai the table and the graph both suggest that as x gets closer and closer to

2 (withx < 2), f(x)is geuting closer and closer to 4. Tn view of this, we say that the limit
of fix) as x approaches 2 from the left is 4, wntten

i )4

Likewise, we need to consider what h'lppéns to the function values for x close to 2 but
iargcr than 2. Here, we use the notation ¥ — 2% to indicaic that x approache.s 2fwm the
right side. We compute some of these values in the second table.

Again, the table and graph both suggest that as x gets closer and closer to 2 (with
x> 2), [fix) is getting closer dnd closer to 4, [n view of this, we-say that-the limit aff(\)
as v approaches 2 from the right is 4, written ‘

V_Iim+ f(.\') = 4

We call llm f (\) and lun f(x) one-sided limits, Since thc two one-sided hmsts of

f(x)are the s'lme we sunmnrue ourresults by saying that the limiit of f{x) as.y approaches
2 is 4, written :

=4

- The notion of limit as we have described it here is intended to communicate the behavior
of a function near some point of inferest, but not actually af that point. We finally obscrve that

we can also determine this limit algebraically, as foltows. Notice that since the expression
: 2 ‘ : .

. xt—4 .
i the nomerator of f{x) = Y factors, we can wriic
X —

S
Him f(x) = lim
x—2 2 v —

(x —2)x +2)

= lith " Cameiierenclate &
x—2 R Wl 2 _ )
= llm(\ +2) =4, As o emoihes G0t DY aghiedhien 4

where we can cancel the factors of (1 ~ 2} since in the hm]l asxy — 2,x1is c[use to 2 bu[
" X #2, sothat x —2#0




T AT s
_g(.t) i
19 13.9 -
1.99 103.99
1.999 1003,999
19999 10,003.9999
x
2.1
2.01 ~05.99
2,001 —995.999
20001 | —9995.9999
¥
A
24+ P
g/
- //
B i/
-1 &’
—2.1
FIGURE |.8
y=f)

Use lhc graph in Figure 1.8 to determine linl\ Fixy, Iinli' S, lim] f{x) and- iiml f.
R i S ' — xr——
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Similarly, we cons:dex one- s:ded ]lﬂ)llb for g(\) = ,as' v — 2. Based on the

graph in Figure 1.7b and the table of approximate tuncuon values shown in the margin,
observe thatas x getscloserand closerto 2 (with v < 2), g(x)increases without bound, Since
there is no number that g(x) is approaching, we say that the Zimir of g{x) as x approaches 2
Jrom the left does not exist, written

" lim g{x) does not exist.
X2

Similarly, the graph ‘uid the table of function-values for ¥ = 2 (shown in the margin)
suggest that g(x) decreuses withowt bound as x 1pproaches 2 from the nghi Smcc therc is

_no number that g(.v) is approaching, we say that-

lim g(x) does not exist. '
x-22F .

Finally, since there is no common valtue for the one-sided limits of g(x) (in fact, neither
limit exists}, we say that the limit of gfx) as x approaches 2 does not exist, written

jim g{x) does not exist.
a2 .

Before moving on, we should summarize what we have said about limits.

A limit exists ifand only if both correspanding one-sided limits exist and are equal.
i Thatis, '

lim f(x) = L, for some number L, if and only lf hm j(\) = lim j(\) =

X—=>q

In other words, we say that lim f(x) = L if we can make f(x) as close as we 'might Hke {0
Lt

L, by making x sutficiently close to a (on citherside of @), but not equal to a,
Note that we can think. about ilill!l's from a purely graphical viewpoint, as in
examptle 2.1, :

EXAMPLE 2. % Determlmr{g Limits Graphlca!!y

Holution For lim f(x), we consider the y-values as x gels closerto 1, with v < 1.
i— 17 .

That is, we fo]lt')w:thc graph toward x.= | from the left (x < 1). Observe that the graph
dead-ends into the open circle at the point (1, 2). Therefore, we say that lim fxy=2

For llrrla S(x), we follow the graph toward x = t from the ught {x > l) Iu lhl‘; case,
X

the graph dead-ends into the solid circle located at the point (, —1). For lhlS reason, we
say that hm F(x) = —1. Because llII‘l ) # 11m S(x), we say. that hm f(\) does

not extst Fm'illy, we have that hm f ( x) =1, amcc thL, graph '1pp|0m.ht,s d y—va]ue of

1 as x approaches -1 both f:om lhe left and from the ughl e ——
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-3.1 —0.491803
~3.01 —0.499168
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= x2 -9
v +9
¥ i ey
3.1 0
3.01 300
3.001 3000 .
3.0001 30,600

since (x —3) > —6as ¥ — -3. Again, the cancellation of the factors of (x +3)is.

' Likcwmc,

" right and from the tefi (i.c., the one-sided limits are equal), we write

‘‘‘‘‘‘ e —————

k )?’ f\M PLS' 2.2 A leit Where Two. Factcns Cancel

Ix+9
I::vaiuate lim w}—j_
. x—-3 1.'2 —9

Holutlon We examine a graph (sce Figure 1.9) and compute some function values for
x near —3. Based on this numerical and graphical evidence, it’s reasonable to conjecture
that h ' o s

lim AN = lim- w: ——1,
ae-dr X2 —9 s a9 2
Further, note that
lim 22 + = lim _3Ad) e L e ol i 1 )
oo 32 =9 e (N -3y o
= llm ,._.l’ o
=3 v — 3 2

valid since in the limitas v = -3, x 1s close to =3, but.x 7é -3, s0thatx +3#0.

B3y +9 1

Hm = .
-.-J—3+ 29 2

Finally, since the function 1ppro1c,hes the same value as v — —3 both from the
3x+9 ]

Hm e = - —, . , B
=3 ‘2 9 e T S

In ex1mple 2.2, the limit exists because both one-sided limits exist and are cqual n
example 2.3, neither one-sided limit exists. : :

AMPLE 2.5 A Limit That Does NoﬂtlEstt

v +9
Determine whether ]lﬂ}‘ 29 exists,
X

Nobation  We first draw a graph (see Figure 1.10) and compulc sonte function values
for x close to 3.
. . . ; Ty 39
Based on this numerical and graphical evidence, it appears Ehat, asx > 37, -5 5
X2 —

is increasing without bound. Thus,

Ix+9
fim ~———— does not exist. .
x—= 3t 12 9
Similarly, from the graph and the table of valucs forx < 3,'wc can say that
o 3x+9 L '
liy . ———— does not exist, -
x—=3- .\.‘2 -9

Since neither one-sided limit exists, we say’

9 : :
does not exist, -

Here, we considered both one- 51dcd limits for the sake ‘Of completencss. Of course, you -
should keep in mind that it either one-sided lnml fails to exist, then the lmut does not
CXISE, BL e e e
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Many limits cannot be resolved using algebraic methods. In these cases, we.can ap-

- proximate the limit using graphical and numerical evidence, as we sce in example 2.4,

AppiOleatlng the Value of a lelt

EXAMPLE 2.4

inx
Evaluate hm —
=0 X

miuitm: Unlikc some of thc limits considered prev10mly there is no algcbm that will-

simplify this expression, Howevel we can still: dmw a gmph (see Plgu:e 11D and '
compute some function values ' .

S .sinx siny -
R SX ——
- X . ) K X
0.1 0.998334 . 0.1 0.998334
0.01 0.999983 8,01 0.999983
0.001 0.99999983 —0.001 0.99999983
0.0001 0.9999999983 . =0.0001 {.9999999983
0.00001 0.999999999983 ~0.00001 | 0.999999999983

The graph andt the tables of values tead us t'o the cnnject_ures:

. osinx : sinx
lim — =1 and lim — =1,
x—-0t X A= X
from which we conjecture that
' siny
lim — = 1.
= X

In Chapter 2, we examine these limits with glLMCl care {und prove that these
conjectres are Correct). ¥ . .l e

Computer or calculator computation of limits is vinreliable. We use graphs and tables
of values only as (strong) evidence pointing to what a plausible answer might be. To
be certain, we need to obtain cart,tul ver| [ﬁCﬂlIOﬂ of our comeclmw We see how to do
this in sections 1.3-1.7.

EXAMPLE 2.5 A Case Where One-Sided Limits Disagree

a . X
Bvaluate [im -—.
x4 J;|
Solution
X
ﬁ is undefined at v = 0, there is no point at v = 0. The gmph in Figure 1.12b
y

The compuler-generated graph.shown in Rigure 1.12a is incomplete. Since

correctly shows open circles al the intersections of the Ewo halves of the graph with the
y-axis, We also have

X X .
Hm — = lim —  $iegvi— s el
=0 x| xalt X :

= lim [
x—0f

=]
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FIGURE 1.12b

lim — does not exist,
T I-\I

. X ) X ) o
and lim — lim — &0 Y O
x—0- |y =0 —X

il

= lim 1
¥—0

= —1.

- ' X
- |t now follows that lim l———l dne% not exm

x|y

" since the one-sided limits are not the same. You should d]’iO kecp in thind that !hiS N '
. observation is entirely consistent with wh'u We see m thc graph.. &__ : T

B3 AMPLE 2.'(- A Limit Descrlblng the Movement of 3 Baseball Pitch

The knuckleball is one of the mos( exotic pitches in baseball. Batters describe the ball as
unpredictably moving left, right, up and down. For a typical knuckteball speed of

* 60 mph, the left/right position of the ball (in feet) as it crosses the plate is given by -

: 1.7 S L
Sy =l e 5in2.7200)
w  8u?

{derived from experimental data in Watts and Bahill’s book Keeping Your Eye on the
Bally, where w is the rotational speed of the ball in radians per second and where
[lw) = 0 corresponds to the middle of home plate. Fotk wisdom among baseball
pitchers has it that the less spin on the ball, the better the pitch. To investigate this
theory, we consider the limit of f(@) as w ~» 0. As always, we look at a graph (see
Figure 1.13) and generate & table of function vatues: The graphical and numerieal
evidence suggests that lin{}r flw) = ' :
. =¥

N

0.5 \ « ' w4 )
AN 1o 0.1645
i 14442

— ittt &
> 4 6 8 10 1ol 0.2088
' 0.0l 0.021

FIGURE I.13

s : 0.001 0.0071
y= E T EE 5in{2.72w) . 0..[}001 0.0002

. The limit indicates that a knuckleball with absofutely no spin doesn’l move at
all {and therefore would be easy to hit). According to Watts aud Bahill, a very slow
rotation rate of about 1 to 3 radians per second produces the best pitch (i.c., the most -
movement). Take another look at Figace 1,13 to convinee yoursell that this makes
QeSS B e . e
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EXERCISES 1.2 @) :
R :

() WRITING EXERCISES
1.

Suppose your professor says, “You can think of the limit of
F(x) as v approaches a as-what f(a) showld be.” Critigue
this statement. What does it mean? Does it provide important
insight? s there anything misleading about it? Repluce the
phrase in alics with your own best description of what the
Hmit is.

. Your friend’s professor says, “The limit is a prediction of

what - f{a) will be” Compare and contrast-this statement 1o
the one in exercise 1. Does the inclusion of the word pre-
diction make the limit idea seem more useful and impor-
tant?

. We have observed that lim f(x) does not depend on the actual
r-sa

value-of f(a), or even on whether f(a) exists, In principle,
x% ifx#£2
13 itx=2
functions such as g(x) = x?: With this in mind, explain why
it is important that the limit concept is independent of how (or
whether) f{a) is defined.

functions such as f{x) = are as “normal” as

The most common limit encountered in everyday lite is the
speed fimit, Describe how this type of limit is very different
from the timits discussed in this section.

. Forthe function graphed below, identify each limit or state that

it does not exist.

@ tim /) ® fim f0)
© fim fG) @ fim )
© fim o Ol
@ T ) ) g

@ Hm f(x) ) lim S

-y

. Sketch the graph of f{x) = o2

. Sketch the graph of f(x)="{ 0 it

. Sketchthe graph of f(x) = {

SECTION 1.2 *+ The Cancept of Limit 85

. For the function graphed below, identify each Jimit or state thut

it ddoes not exist.

{a) Mm _f{x) (b} ]im- fix)
i x-eQF

(€) lim f{x) @ lim fix)
(o) Bl f(x). M lim /()
(@ B ey ®) lim

@ dim 1) @ lim 1)

—|—+——i— H—t+ -+ x
-6 -2 1 2 4 6 )
_2_._
sk
20 i xr <2

. and identify

i

each limit.

(@) Hm f(x)
12

© lim f(x)

) Il__igl+ Six)
() im f{x)
x=>]
-l if v<0
i x =0 and
VI+T-2 it x>0
identify each Jimit,
@) lim f(x)
A .

(b) mﬂfu) () lim f(x)

@ tim f(x) (@) lim /)

x4 1 if x o« —t :
sl i xz - and iden-
tify each limit. :

@ lim S
{©) lim f(x)

by fm F
I b
{d) lim f¢x)
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6. Sketch the graph of f(x) = { 3 if —1<x<| and
‘ ‘ 2x+1 if x>1

identify euch 1§1nil.'_
@ lim_ fx) (b) Tim_fx)
(d) }ijjg FARY. e} _ligsf(x)

. Evaluale j'(l.S) SFLL), F(1.01) and*f(l.OOl), and conjec-

ture a value for ]1m fix) for f{x)=

(c) _‘ljg!i f{x)

. Evaluate

f00.5), j (0.9), f(() 99) and F(0.999), and conJELiure a value

x—1
for ,‘]Ln#* Jlx) for fa) = \—/—T:T

Ev.'tlua!c f(—] SJ'f(—l 1), f(—1.00) and f{—1.001), aﬁd

Does ltmi Flx)exist?
.

CO[IJECtlIrLEiVﬂ[lleOI’ lxm f)for flx) = : +
f(—0.5), _f( 09) j( 09)) and £(—0.999), and con}ectum
11m j(r) for f(\)-— -+1

a value ror

exist?

@In exercises 9-14, use numerical and graphical evidence to

conjecture values for each limit,

2 : a4y
ot —1 : + x
2, lim 106, §im ————
=l x — X — [‘2_,“.2
T :
R s sinx
11, Hm — E 12, lim
=0 sinx W BTN — T
. tanx . PR
i3, lim — 14, lime

=0 §mMXx 10

- In exercises 15-26, use numerical and graphical evidence to

conjecture whether the limit at x = « exists. If not, deseribe
what is happening at x = ¢ graphically,

15, fim % = 16, tim 2!
. _ . lim
ot X2y 1 ==l x4 ]
V3 -2 A4
17. lim ——— 18. _iimiL
i 3 g
1 1
19. lim sm( ) B © . 20, limxsin (—)
x—=0 X x40 X
x—2 o k 1
21, Hm * 22, lim bt 1l
=2y =2 y=—1 x2—1
23, liminy ' 24, linll)xln(xl)
=0 N
& (3 _I.'
25, lim 20t 26. lim L2
P _ >0 x

')

X +l L . .
]|m and similar limits to investi-

27. Compute I1m

gate the Iollowmg Suppose th‘lt S{x)and g(x) are polynomials

with g(a) = 0 and f(a) # 0. What can you conjecture about
tim 09 '
T g(_t)

.Bvaluate

g ar.

1-14

28.. Compute hm i— tim >
X2+

1" oy

tigate the tollowmg Supposé timt Sflx)and g(\)ﬂrg functions
with f (a) = 0and g a) # 0. What can you conjecture about

In exercises 29-32, sketch a graph of a function with the given
properties.

29, /(-1 =2 fi0=-1, f(1)=3and Iim f(.l‘}do.cs not exist,

30. f(x) =1lfor-2 =<y =1, hm { (x) = 3.md hm fa)y =1L

3!. j(O) =1, lun f(\) = 2 angd lun f(t} = 3

32, hm f(\)_ -2, f(()}_ I, f 2)—-3 und luuf(\) does not
‘exm ‘ _

33. -As we see in Ciaapte.r 2, the slope of the tangezit line to the
curve y = f at x =1 is given by m = ]E,% EET:—I

Estimate the slope /1. Graph v = /x and the line with slope
m through the point (1, 1). ’

34. As we see in Chapter 2, the velocity of an object that has
traveled /¥ miles in x hours at the v = l hour mark is given

I
Lstmmrc, tlm ]mm

byv= hm ‘[‘_—
X

35

Consider the following nrgumcms Lonnermng fim sin -
X

i—0F
First, as x > 0 approaches O, — increases without bound;

since sins oscillates for inicreasing 1, the limit does not ex-
© - ist. Second: faking x = 1,0.1,0.01 and so on, we compute
sinyr = sin 107 = sin l(}();f = ... ={); therefore the limit
equals 0. Which argument sounds better to you? Explain.
Explore the litnit and determine which answer is correct,

[
=

Consider the following argument concerning tingJ eV Asx
. . A= .

. A 71

approaches (), — increases without bound and — decreases
x X

without bound. Since ¢’ approaches 0 as 1 decreases without

bound, the limit eqm]s 0. Dlscuss all tlu, errors mads in this

argument. .

MNumerically estimate  lim (1 + )Y and  lim (1 4 207,
. X Ce—={rt : 10"

Note that the function values for x > 0 increase as x de-
creases, while for v < O the function values decrease as x

increases. Explain why this indicates thay, if ltm(f + 1)1"‘

exists, it is between function values for po».m\e dnd negative
x’s, Approximate this limit correct to eight digits.

38. Explain what is wrong with the following lugi_d {you may use
exercise 37 to convince yourself that the answer is wrong, but
discuss the logic without referring to exercise 37): us x — 0,
itis clear that {1 4 .x)— 1. 'Since | raised to any power is 1,
lim(l + \)]"‘ = hm(i)"" =1, s

and similar lmnts o inves-
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5l 39.

40,

41

42,

43

45

46

Numerically estimate lim. x¥°F Try to numerically estimate
el

lim %% If your compuier has difficulty evaluating the fune-

x>0

tion for negative x's, explain why. ‘

Explain what is wrong with the following logic (note from
exercise 39 that the answer is accidentally correct): since 0 to
any powerm 0, hm F =m0 = 0.

=0

Give an example of a funcnon fsuch lh'lt Ilm f{x)exists but

F{0) does not exist. Give an example of a funcuon g such that
g(O) e'mh “but lm}) £(x) does not exist.
S

Give unexample of a functmn fsuch that lun f(z) exists and

J(0) exists, but hm f(\) # f(O)

In the text, we described ]1m f(\) = L as meaning “as x gets
closer and closer to 4, f(,x) is getting closer and closer to
L As x gets closer and closer to 0, if is true that x? pets
closer and closer to —0.0k, but it is certainly not frue that

iinax2 = —0.0t, Try 1o modify the description of limit 0

Ay .

make it clear that Iimn_\‘z # —0.01. We explore a very precise
IaN

definition of limit in section 1.6.

In Figure 1.13, the final position of the knuckleball at time
1 = 0.68 is shown as u function of the rotation rate w. The
batter must decide.at time -t = 0.4 whether to swing at the
pitci. At 1 = 0.4, the feft/right position of the ball is given

1 5
by h(a)) i sin (1.6¢). Graph fi{w) and compare (o
w

Figure l.l3_ le_]eemre the imitof A{w) as w — 0.Forw =0,
is there any difference in ball position between what the batter
sees af ¢ == 0.4 and what he tries to hit at t = 0.68?

A parking lot charges $2 for each hour or portion of an hour,
with-a maximum charge of $12 for alt day. If £(r) equals the
total parking bill for 1 hours, sketch a graph of y = f{/) for

0 <t < 24, Determine. the limits li!%]‘,f(f) and lin} r@, if
i—>3.5 11—

they exist.

For the parking fot in exercise 45, determine all values of

a with 0 < @ < 24 such that llm S} does not exist. Briefly

discuss the effect this has on your parking strategy (e.g., are
there. times where you would be in a hurry to move your car or
times where it doesa’t matter whether you move your car?).

SECTION 1.3 v+ Computationof Limits 87

@ EXPLORATORY EXERCISES

oy

In a situation snm!ar 10 that of example 2.6, the leftright
position of a knucklebail pitch in baseball can be modeted by

5
P = 8—(1 - w\ 4er), where £ is time me‘uured in seconds

(0 <t <068 and w is the fotation rate of the ball measurcd
in radians per second. In example 2.6, we chose a specific
t-vatue and evaluuted the Hmit as o -5 0. While this gives us
some informaiion about which rotation rates produce hard-
to-hit pitches, a clearer picture emerges if we look at P over
its entire domain. Set @ = |0 and graph the resulting func-

tion ﬁ(] vos40¢) for 0 < ¢ < 0.68. Imagine iouking ata

pllcher from above- ﬂm{ lry to visualize a bascball starting at
the pitcher’s hund at ¢ = 0 and finally reaching the batter, at
¢ == 0.68. Repeut this with @ = 5, = |, @ = 0.1 and what-
ever values ofmllyou think would be interesting. Which values
of w produce hard-to-hit pitches?

In this exercise, the results you get will depend on the accu-
racy of your computer or calcutator. Work this exercise and
compire your results with your classmates’ results, We will in-

vestigate Itm . Stant with the calculations presented

.‘: X
‘.2
in the mble (your results may \"sr))

L O

0.1 —0.499583. ..
0.01.-| —049999583. ..
0.001 | —0.4999999583...

Deseribe us pru,nely as possnb!e the pallcrn shown here, What
would you predict for £(0.0001)? 7(0.00001)? Does your
computer or caleulator give you this answer? If you continue

< trying powers of 0.1 (0.000001, 0.0000001 ete.) you should

eventualty be given a displayed result of —0.5. Do you think

this is exactly correct or has the answer just been rounded

oft? Why is rounding OfF inescapable? 1t terns out that —0.5
is the exact value for the lmit, so the round- off here i is some-
what helpful. However, if you keep evaluating the iuncnon at
smaller and smaller valiies of x, you will eventually see a re-
ported function value of 0. This rovnd-off error is not so benign;
we discuss this error in section 1.7, For now, evaluate cosy at
the crrent vale of x and try to explain where the O cameé from,

@) .3 CO_MPUTATION OF LIMITS

Ll bzt

B R L

Now that you have an idea of what a limit is, we need to develop some means of caleulating
limits of simple functions. In this section, we présent some basic mles for d:.ahng with
common limit problems. We bcgm with wo snnp!e limits.
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ﬂ:% 39, Numerically estimate lim X Try to numerically estimate

40,

41.

42

43,

i) a4

45,

46,

Im)l o your computcr has ditficuity evaluating the func-
=0

tion for negative x’s, explain why,

Exphiin what is wrong with. the following logic {note from
exercise 39 that the answer'is accidentally correct): since {t to

any power is 0, 11m Raatd Imé()*“ =40
A=

Give.an e\ample of a function -f such that hm Fix) exists but

FA)] does 1ot exist: Give an example of a functu)n £ such that
£(0) exists but lm})g(.t) does not exist.
=0 .

Give an exﬁmp!e of a function f such that lina Flx)yexistsund
. I-»
S0} exists, but lin?J flxy £ Fy, .
=

in the text, we described ]1m Jx) = L as meaning “as x gets
closer and closer to a, f(l) is getting closer and cloael to
LY As x gets closér and closer to 0, it is true that a7 gets
closer and closer to —0.0f, bur i is certainly not true that

lim+? = ~0.01. Try to modify the description of limit to

1—0

miake it clear that 111% x% # —0,01. We explore a very precise
definition of limit in section- l 6.

In Figure 1.13, the final postl:on of the knuckleball at time
{ = 0.68 is shown as a function of the rotation rate w. The

batter must decide at time ¢ = 0.4 whether to swing at the
pitch. At r = 0.4, the left/right position of the ball is given

i 5
by filw) ="~ — — sin{l.6w). Graph fi(w)} and compare to
o - 8w? -

Figure 1.13. Conjecture the limit of i{w) as e — 0. Forw =0,

is there any difterence in ball position between what the batter

sees at 1 = 0.4 and what he tries to hit at r = 0.68?

A parking lot charges $2 for each hour or portion of an hour,
with a maximum charge of $12 for all day. If f{t) equals the
total parking bilt for ¢ hours, sketeh a graph of y = () for
0 =<1 <24, Determme the Hmits’ hm Fit) and hm f(f), it

they exist.

For the parking lot in exercise 45, determine all values of

a with 0 < g < 24 such that lim f(t) does net exist. Briefly
- f—a

discuss the effect this has én your parking strategy (e.g., are
there times where you would be in a hurry to move your car or
times where it doesn’t matter whether you move your car?)..

Py T

P
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EXPLORATORY EXERCISES

In a situation \1"1!1.11' to that of e'(‘uuple 2. 6 the lef/right
pasition of a knucklebull pltch in baseball can be modeled by

s
P = §~5(1 — Cos rlwr), whcrc s mne measured in seconds

(0 =1 = 0.68) and-w is the rotation rate of the bail me'mlred

in radians per second, In example 2.6, we chose a specific
t-vahie and evaluated the limit as « — 0. While this gives us
some information about which rofation rates produce hard-
to-hit pitches, a. clearer picture emerges if we-look.at P over
its entm donmm Set w = lO and graph the resu[tmg func-

_tlon — (l S H] 40!) for 0 <t < 0.68 Imagine lenkmg ata

pltch:,r trom above and tey to vistalize & bascball starting at
the pitcher’s hand at 7 = 0 and finully reaching the batter, at
# = 0,68. Repeat this with @-= 5, w = 1, @ = 0.1 and what-
ever values of i you think would be 1nlerestmg; Whu,h values
of w produce tmrd to-] lnt pitches?

. In this exercise, the resu!ts you get \\'ll! depend on the accu-

racy of your computer or caleulutor, Work this exercise and
compare your resubts with your classmates’ results, We will in-

. . tosxy—1 _-- . .
vestigate im}) - Start with the calculations presented
X Y .

in the table (your—resu_lls may. vary):

X f(x)

0.1 —0.49U583, ..

0.01 —0.49999583. ..
0.001 | -0.4999999583. ..

Describe as precisely as possible the pattern shown here, What
would you predict for £(0.00061)? £(0.00001)7 Does your
computer or calenlator. give you this answer? If you continue
trying powess-of 0.1 (0.000001, 0.000000t ete.) you should
eventually be given a displayed result of —0.5, Do you think
this is exactly. correct or has the answer just been rounded
off? Why is rounding oft inescapable? It turns out that —0.5
is the exact value for the limit, so the round-off here is some-
what helpful, However, if you keep evaluating the function at
smaller and smallef values of x, you will eveniually see are-
ported function vatue of 0 This round-off error ks not so benign;
we discuss this error in section 1.2 For now, gvaluate cosx at
the current vatue of x and try to expinin where the 0 came from.
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COMPUTATION OF LIMITS

Now that you have ap idea of what a limit is, we need to develop some means of calculating
limits of simple functions. Tn this section, we present some basic rules for dealing with
“common limit problems, We begin with two simple limits.
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FIGURE 1,14

lime=¢ .
X—oa

FIGURE 1.15

iy =a
X g

For any constant ¢ and-any real number «,

lime=c. "~ . : (3.1} .

i
|
x—u . B . - ’ i
i

I other words, the Hmit of a constant is that constant, This certainly comes as no

“surprise, since the function £(x) = ¢ does not depend on x and so, stays thesameasx — a

(set: Flgme 1.14). Another simple limit is the tol!owmg,

For any real number a,

limx =a. -3

!
i
i
i
T—=u i
i
i

Again, this is not a surprise, since as x — a, v will approach a (sce Figure 1.15). Be

_ sure that you are comfortable enough with the limit notation to recognize how obvious the

limits in {3.1) and (3.2) ave. As simple as they are, we use them repeatedly in finding more
complex limits. We also nieed the basic rules contained in Theorem 3.1,

EHI"C}RFM 3. 3

Suppose that lrm Slx}yand llm g(x) bothrexist and let ¢ be any constant. The °
following thcn 1pply

(i) llm[c fl=c- lim f),
(i) hm[f(l.)ﬂ:g(\)] = llm S+ hm glx), .

(i) Hm{f(x) - g0)] = [}[ﬂ}}l s [;i_l}}] g(x)] and

fx) " lim f(x)

(iv) i‘ﬂ W '-};m éiﬁ (lf lim g(x) # 0)

‘The proof of Theorem 3.1 is found in Appendix A and requires the formal definition
of timit discossed in section 1.6, You should think of these rules as sensible results'that
you would certainly expect to be true, given your intuitive understanding of what a limit
is. Read them in plain English. For instance, part (i} says that the limit of a sum (or a
difference) equals the sum (or difference) of the limits, provided the limits exisi. Think of
this as follows. If as x approaches a, f(x) appmachcs L and g(x) ﬁppnoachu A, then
S(x) =+ g(x) should approach . + M. ‘

Observe that by applying part (iii) of Theorem 3.1 with g(x) = f(\) we get that,

_whenever hm F{v) exists,

tim[/ (O] = lm[f(x) -‘f(.'x-)}

[lim f(,t)] [lim f(.r)] :[Al.im 'f(.\')]z.

i

Likewise, for any positive integer n, we can apply pﬂrt(m)ol Theorem 3.1 l’L[)C’lELdly,

lo yleld

timtor = [1im 7o) (3:3)

(see exercises 67 and 68).
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Apply the rles of limits to evaluate hm) (3+% — Sx + 4)'.,
X2 o

"Evaluate hm
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Naotice that mkm;, Fy=xin(3. 3) gives us that for any mtcge: n > 0 'md any real

‘number «a,

lim x" :_u*ﬁ. ' ' (3.4)

A

That is, to compute lhc limit of any p()‘:ltl\’c power of x, )ou smlp!y substitute in the v'llue
of x being approached.

TGN ¢RI SHITABEY S50 m o ¢ e e —_ g

EXAMPLE 3.1 Fmdlng the Limit of ar Polynomlal

Solusion  We have

hm(3x —-Sr+4= hm(?n 3y - ltm(i\)Jr [1m4 T F N T

l'—)
=3limx? - Shmx-+4- i theom i
a2 x—2 .

=3 5244 =6. . ke o

S T P R . S — - S A"

£ ‘(/XMM B3 } Flndmg the Limit of a Ratlonal Function

x0T —5v+4
Apply the rules of limits to evaluate lim‘ }——2%
] X -

Solution  We get. .
| li 3554 .Eiil'.]s(ﬁ D)

im = - HESUI S PRI AR A T
=3 x2-=2 lim(x? - 2) - o

a—3

Aimx3 -5 ]in%.\' + lim 4
X t

=3

= Volheewey B ant dio
lim x2 - fim 2 !
a3 x—3
PF-5.3+4 16 ) : ‘
= 2 _72 - By edt s ]

You may have noticed that in examples 3.1 and 3.2, we simply ended vip substituting
the value for x, after taking many mlcnncdmu, sleps. Tn example 3. 3 it’s not qmle so
simple.

EXAMPL  Finding a Limit by Factoring

x—1 - X

Soletion  Notice right away that

oy fmet oD

lim :

1 1 —x lim(l — \}
=]

since the limit in the denominator is zero. {Recall that the limit of a quotient is the
quotient of the Hmits only when both limits exist and the limil in the denominator is not
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" zero.) We can resolve this problem by observing that

Coxr o L= DI D) e b s
lim = lim —
=l l—x xl L —{x—1) Aonenni e
o
= lim e+ D) -2,
sl —1

where the cancelhnon of the factors of (1 ~ 1) is valid bcums(, in the limit as x — 1,
.nsclosclolbutx#lsothaix—l%O Moo e -

In Theorem 3.2, we show that the limit of a polynomnf is snnply the value of Ehe
polynomial at that point; that is, to find the limit of a polynomial, we s:mply substitute in
the value that x is appr o%hmg -

i HE:QRLW 3. ')

For any polynomial p(x) and any real number a,

lim p(x) = p(a)..
X B

PROOF
_ Suppose that p(x) is & polynomial of degree n > 0,
_ pl) =’ + PR Sl U -+ €1X 4 Co-
Then, from Theorem 3.1 and (3.4), . ' |
7 lim p(x) = ilm(c,,\ + e X" e ox + <)

x-ra

= ¢p limx" + ¢poy 11m X g e lim x4 Timep
Xl

- X4 e aadt]

=it +cpa"” +-—-+(|a+c‘0:p(a). B

Evaluating the limit of a polynomial is now easy. Many other limits are evatuaied just
as easily,

HH}RPM 3 3 ,
Suppose that lim f(x) = L and # is any posiiive int¢ger. Then,
X—=a

lim /7 = offim 70 = VL,

where for # even, we assumne that £ > 0.

The proof of Theorem 3.3 is given in Appéndix A. Notice that this result says that we
may (under the condilions ontlined in the hypotheses) bring limits “inside” ath roots. We
can then use our existing rules for computing the limit inside.

CEMAMPLE 3.4 Evaludﬁng the Limit of an nth Root of a Po'!ynomial
Evaluate liny V3xT = 2. | '
X

Sojution By Theorems 3.2 and 3.3, we have

lim v3x2 — 2x = flim(3x? ~ 2x) = V8.
x—=2 a2 B




In general, in any case where
the limits of both the numerator
and the denominator are 0, you
should try fo algebraically

simplify the expression, to get-a

cancellation, as we do in
examples 3.3 and 3.5,
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[PETR RS 2 - S

EXAMPLE 3.3 Flndmg a Limit by Ratlonahzmg
VY242

Evalmtc lim ——

=0

selution  First, notice that both the numerator (vx + 2 — +2) and the denominator
(x) approach 0 as x approaches 0. Unlike example 3.3, we can’t factor the numerator.
However, we can rationalize the numerator, as follows:

NS RN ) (\/Tr—f)(\/‘izrf)
x : x(\/x+ 24 v2)
-

T R T

where the tast equality holds if x 3 0 (which is the case in the timit as v — O) So, we
have

K422

T NWA IV

-2  1 I

= him
0 F T \/'" erf 2\/5 B

So that we ar¢ not restricted to discussing o_nl_v the algebraic funciions (i.e., those that
¢an be constructed by using addition, subtraction, multiptcation, division, exponentiation
and by taking ath roots), we state the following result now, without proof,

Va2

lim

x—=0

THEOREM 3.4

For any real number a, we have

(@) lim sinx = sina, (v} limsin™' x =sin '@, for -1 <a < 1,
X—a A—=a
(i) lim cosx = cosa, (vi) limcos™'x=cos la, for -1 <a < |,
I : . Xerdd .
(iil) lm e’ = ¢ and (viiy limtan™' x = tan~' g, for —oc <a <ooand
A—=a X : Re g
(iv) limlnx = Ine, fora > 0. (viii) if pis a polynomial fmd hm fx)y=1L

x—a — p{a)

then hm flplx)y = L.

Notice that Theorem 3.4 says that limits of the sine, cosine, exponential, natural log-
arithin, inverse sine, inverse cosine and inverse tangent functions are found simply by
substitution. A more thorough discussion of funcuom with this prope:ty (called continuity)
is found in section 1. 4 .

TR AT S S N S RN

EAAMPLE 3.6 Evaluatlng a Limit of 2 an 1 Inverse Trlgonometnc Function
AR

)
By Theorem 3.4, we have

o (.\:%1) ,' _,1(1)' R
— | = SIif1 =1 ==
2 C\2) T

So much for limits that we can compute vsing elementary rules. Many limits can be
found only by using more careful analysis, often by an indirect approach. For instance,

Evaluate lim sin™

x—0

sSolution

limm sin
x-0

consider the following problem.
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FIGURE I.16

y =cotx
Y
s
0.994
0.98 1
1
097 \
bttt
-0.3 0.3
FIGURE .17
y=2xcolx -
x 0] xeoty
+0.1 0.9967
+0.01 0.999967
+0.001 0.99899067
+0.0001 0.9999969967
+0.00001 0.999999999967

BEXAMP

. problem here is that we are attempting to apply the result of Theorem 3.1 in a case

- Figure 1.16 suggests that lm}) cotx does not exist. You should compute some function

2 3. :’ A lett of a ?foduct That !s Not the Product ofthe leItS

Evaluate lim (.r colx).
x—0

Solution  Your first reaction might be to say 1hal lhls isa Timit of a product and so, .
must be the product of the limits;

lim{x cotx) = (}im .1') (1im cot 1) Frue is gt
x>0 1—0 x—0

=0.7=0, o T ' (3.5)
where we've written a *?” since you probably don’t know wh'ut to do with lma cotx.

Since the first limit is 0, do we really need to worry about the secand limit? The

where the hypotheses are not satisfied. Specifically, Theorem 3.1 says that the limit of a
product is the product of the respective limits when-alfl of the limits exist. The graph in

values, as well, to convince yourself that this is in fact the case.-So, equation (3. 5) does
not hold and we're back to square one. Since none of our rules seem to apply here, the
most reasonable step is to draw a graph (see Figure I 17) and compute some funcuon
values. Based on these, we conjecture that '

Eim(_r colx) =1,
which is definitely not 0, as you might have initially suspected. You can also think about
this limit as follows: : '

) 4 COSX X
lim{y cotx) = lim {x— ) = lim (————cos \)
=0 x—{ SIN.X a0 ASINY

R ‘ .
lim ——- lim cos .y
x—0 siny =0 .

lim cos X 1

a0 . =
- smxy 1 "
Jim ———
-0 X

since hm cos.x = [ and where we have used the conjecture we madt. in example 2.4
—

sin.
that Ilm — =L (We vcufy this last conjecture in section 2.6, using the Squecze

x
l‘hconcm which follows.) ¢

At this point, we introduce a tool that will help us determine a number of important liits,

H FU R %“ M 3.k (Squeeze Theor em)
Suppose that _ 7
Sf(x) = g(x) = A(a)-
for all'x in some interval (¢, ), except possibly at the point a € (¢, ¢) and that
' lim f(x) = lim A{x) = L
- Xoa X
for some number L. Then, it follows that

}im glx) = L, also.




y
1l y=hix)
y=gk)
y=Jflx)

FIGURE 1.18
Tiie Squeeze Theorem

The Squeeze Theorem also
applies to one-sided limits.

v sy
+0.1 —0.008

+0.01 8.6 x 1075
+0.001 5.6 1077
+0.0001 | -9.5%10°°
+0.00001 | —9.99 % 1071

‘Bolution  Your first reaction might be to observe that this is a limit of a product and
* 50, might be the product of the limits;

" we're back to square one .‘)mcc none of our rules seem to 1pp1y here, the most

SECTION 1.3 *+ Computation of Limits - 93

The proof of Theorem 3.5 is given jn Appeéndix-A, si_n(:e it depends_on the precise

“definition of limit found in section 1.6. However, if you refer to Figure 1.18, you should

clearly see that if g(x) lies between f(x) and h(x), c'xcc_pl possibly at @ itself and both f(x)

_and A(x} have the same limit as v — «, then g(x) gets sqieeezed between f{x) and A{x)

and iherefore should also have a limit of L. The challenge in using the Squeeze Theorem
is in finding appropriate functions f and & that bound a glvcn function g from bclow and
1bove respectively, and thit have the sume limit as x —.a.

Nt e

S A e e n i e D — e SR i i =

i XAM PLE 3, i Usmg the Squeeze Theo: em to Verify the Value of a lelt

- L. InNT
Determine the value of lim [xz cos (—)]
. =0} . X

i AN i '
lim [.r2 cos (_)} ?=(lim .\'*) [l]m cos (—):| LTI P, (3.6)
- X x—{) x—U X

However, the graph of y = cos (%) found in Figure 1.19 suggests that cos (1)
oscillates back and forth between —1 and 1. Further, the closer x gets to 0, the more
capid the oscillations become. You should compute some function values, as well, o
convinee yourself that hm cos ( ) does not exist, Equation (3 6) then does not hold and

reasonable step is to draw a graph and computc some function values in an cffort to scc
what is going on, The graphof y = x gos( 1) Appe‘trs i Flgme 1.20 and a table of
function values is shown in the margin.

)l ) ) }I

-0.2

FIGURE 1.19 ‘ . FIGURE '1.20
yszx (-]—) ' y = xcos (l)
X . X

The graph and the table of‘_ function values Suggcsl_ the conjecture: i

- Hm [.1'2 cos (l)] =0,
cox—0 X

which we prove using the Squeeze Theorem. First; we need to find functions f and & such that

- Fixy < xPcos (%) S h(v\'):.
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—0.03+

FIGURE 1.21

y = xZeos (1), _)’*l 2 and
y=—at

Mlchael Freedman (I95I-— )

An American miathematician who -
“first sotved one of the most

famous problems in mathematld

"the four-dlmenswnal Pomcaré

.Conjectiire. A winner.of the F;elds

[Medal, the, mathemaucal
: _':equwalent of the Nobel Pnze. _ '.f:
Freedman says, “Much of the

power of mathemancs comes -
from combmmg msnghts from
seemingly dilferent branches of

the discipline, Mathematics is not ..
:somucha col[ectlon of different

"stibects as a way of thlnkmg As
. such, it may be applied to any ©:::
‘branch of knowledge.” Freedman

- finds mathematics t¢ be an open -

fi eld forre earch saying that, “It’

_[_sn 't _n_e_cgs_sary. to.be an old hand in -

anarea'to make a contribution,” -

Limits and Continuity

- for al[ x 76 0. We jllustrate this meqmllty in Figure’ | 21 Fmtilcr

1-22

for all x # 0 and where lian f(6) = lim h{x) = 0. Recall that
X2 xX—r

—1-£ ¢os (f) =1,
: X

forall x # 0. If we muluply {3.7) thraugh by x> 2 (notice that since x? = 0 thls
multiplication preseives the incqualitics), we get

—x? < x*cos (_— < .r‘)'.
. X .

61

1|m(~ )= 0= llm 1‘.
x-+0) =y

So, from the Squeeze Theorem, ‘il now _l‘o]lows that

|
lim 5% cos ( ) =0,
x—0 Ry

also, as we had conjectured, & &

BEYOND FORMULAS

To resoive the lmm in ewmp!e 3.8, we could not apply the rules for lamus confained
in _Thcmcm 3.1. So, we resorted to an indirect method of finding the limit. This tour.
de foree of graphics plus caleulation followed by analysis is sometimes referred to .
as-the Rule of Three, (The Rule of Three presents-a general strategy for atiacking
new problems. The basic idea is to look at problems graphically, numericatly and
analytically.) Tn the case of example 3.8, the first two elements of this “rule” (the -
graphics in Figure 1.20 and the accompanying table of function values) suggest a
plausible conjecture, white the third element provides us with a carefu] mathematical
verification of the conjecture. In what ways does this sound like the scientific method? -

Functions are often defined by different expressions on different intervals. Such
piccewise-defined functions are important and we illliSlra{c such a fimction in example 3.9.

i DIAMPLE 3.9 A lelt for a Plecew:se Defmed Functton

Evaluate lmb fix), where [ is defined by
— :

forx <: 0
forx>0"

1“+2c0s1 + 1,

fo={5 T

HSolution  Since f is defined by different e\pmssmns forv < 0and t'01 x = 0, we must
consider one- suicd limits. We have

llm f(\)“ hm (\ +2€03\—§—1)“2c050-+ 1ﬁ3

by Theorem 3.4, Also, we have
lim f)= lim{e - =e"—4=1—-4=—-3
x>0 ST

Since the one-sided limits are different, we have that Iim} f(x) does not exist, % .
=
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We end this seciion with an example of the use of limits in computing velocity. In
section 2.1, we see that for an object moving in' a straight ling, whose position at time 1 is
given by the function f{f), the instantaneous velocity of that object at time 1 = 1 (i.e., the
velocity at the instant t = 1, as opposed to the average velocity over some period of time)
Ais given by the limit - '
ISR,
lim
ft-31) h
KAMPLE 310 Evaluatlng a Limit Desca |bmg VeIocnty
Suppose that thc posmon fumuou for an object. 1[ time (seconds) is given by
=+ 2 (feet), ‘
-find the instantancous velocity of the object at time ¢ = 1,
Holution  Given what we have ]ust learned aboul limits, this is now an easy problem to
solve. We have
. P40y — f( L+ 02 +2] -3
lim A ) /) = lim-[( ) ] .
h—0 h it=0 h
While we can’t simply subslitute /2 = 0 (why not?), we can write
M ERY 213 (12 k)~
lim = fim - Pop ety e spnarant 10505,
h—6 h k0 oo )
20+ h? 2+ h)
= {im ——— = liIm —
kU h =0 h
L 24 h
= lim =2. i ‘b
h—+0 I
So, the instantancous velocity of this object at time = | is 2 feet per second. .|
EHERCIBES 1.3 @>
<

1

4

. Suppose ‘that you can draw the graph of y = f(x) with-
out lifting yowr pencil from your paper. BExplain why

() WRITING EXERCISES

Given your knowledge of the graphs of polynomials, expluin

why équ'uions (3.1) and {3.2) and Theorem 3.2 are obvious,

Name five non-polynomial tunctmns for which limits can be
evaluated by substitution.

lim f(x) = f(a), for every valve of a.
X—=ru

In one or two sentences, explain the Squeeze Theorem, Use:

a real-world analogy {e.g., having the functions represent the
locations of three people as they walk) to indicate why it is true.

Given the graph in Figure 1,20 and the calculations that follow,

it may be unctear why we insist on using the Squeeze Theorem

before concluding that ]il’l’(l)[.tl cos (1/x)] is indeed 0. Review
T

section 1.2 to explain why we are being so firssy.

In e\elc:sosl 34, ev ahmtelhemdlcdied]mnt,lme\asts Assume

ﬂl‘it lim L 1 1.
—¢ x .
1, lin})(xz ~3x 4 1) 2 lim V25 1
r— x—
- o Lo x-5
3. _11_13(05 {x%) 4, Eu)n2 T
_,2__:_( . 2 x -2
5. lim ' . 6. i
=i X — | y2 - 3x-+2
LoxtLx =27 P
lim—E L g
X tanx
9. Jim SnT 10: Hm et
0 an =0 X
=20+l
11, lim 1-(, :

a0 x2 4 x

12.

. ‘ ¥
lim x” ese’x
=0t
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Vitd-2

13. Lim 14, hm
t-—)ﬂ v =03 e Sy 4+ O
-1 ' 2
15, Tim S 16, tim Y=
=l Jr—1. : id ¥ =
i 2 2 2
17. lim§{ —— — ——— ) 18. lim (H — e
x>l \x - | x2—1/ a0\ Y | xf
o b—e ' i 1452
19. lim 20. Tim sine” /')
10 | — et e
Lo . . 203
2t tim SEL 22, i S0
20 X —0 Xt

23, Jim /), where /(2) = f; ::: ;;
241 iy <1
3x+1 ity > =1

42 ifyv -l

£

]_ilr_ll J{x), where f(_r)_:

25, Tim f), where S =130 11 jfas -1
c e L |2 ifx <=2
26. !1_13} S0, where f(x) = K ifx>2

. W+l ity < —1
27, lim f(x), where f(x) = {3 if—l<x <l
AR ‘ 2x+1 x>
2v+ 1 ifx <1
28. lim f(x), where f{x) =13 if—1<x <1
o w1 ifx>d

2402 —4 . 140y — 1
29, lim 2P 4 30, fim A L
A—0 h - h->Q h
i S T LoVt 42
31, i ————— 32, l:m-z——
A=l \{Eﬁﬂw— Vi+3 =0yt
5 = ' . tan2x
33, fim XL 34, fim o2t
-2 244 0 Ax

35

value of limx?sin(l/x). Use the Squeeze Theorem to
prove ﬂnt'ry_':)u are corvect: identify the functions f and &,
show graphicatly that f(x) < x?sin(1/x) < hi(x) and justify
hm f(\) = hm R{x),

36. Why cun’t you use the Squeeze Theorem as in exercise 35 to
prove that lim x2sec(1/x) = 0? Explore this limit graphically.

37. Usethe Squeeze Theorem to prove that ligl[._/.?cosz(] /) =0.
X

Identify the functions f and h, show graphically that -

fly)y = \/.\_'casz(l/.}‘) < h(x) for all x>0, and justify
lil})\+ flx)y=0and iilg}l+ hix}=0.
X =

38. Suppose that f(x) is bounded: that is, there exists a constant
#f such that | f(x)} = A for all x. Use the Squec?e Theorem
o pro\ctlnl llm ¥y =

In exercises 39-42, either find the ]mut or ex;}lmn “hy it does

not exist,
40, _l_im_ V16 —x?

39, lim V16 — y?
41, lim Vx?43x+2 42, Hm x?4+3x+2

a2 r—»—2%

Use numerical and graphical evidence to conjecture the

1-24

. I —-cosxy 1 o
43, Given  that lun 7 T3 quickly  evaluate
B X ) .
VT Zcosx
lim —M88—. - ]
o Y sin I 2
siny —cos‘y
44, Given that ]1m — =1, qu]ckly ev11u1te Ilm o
. x x? .

glx)y fx<u
o Mxy fx>u ] )
- I{x). Explainwhy lim' f{x) = g{a)and determine 1im+_ S

45, Suppbse Fly)y = for p_olynomialsi glx} and

46. ‘Explain how to determine Him f(x) if g and  are polynomials
B X—=d . - .
) glx) ifx<a .
and f(x)=.¢ ¢ ifx=ua.
hxy ife=a
Evaluate cach limit and justify each step by citing the appro-
priate theorem or equation.
0 lim)(.\'2 ~3x 4+ 1)
=2 .

47

" {b) }mu 12 T

48, Evaluate cach limit and justity cach step by citing the appro-
priate theorem or equation. .

(a) ]_in_11[(.1‘ + 1) sin .f:] :

X

by Hm <
B —=1tanxy

In exercises 49-52, use the gnen posmon function f{f) to f‘nd
the veloeity at time t = a.

49, fy=1+2,a=2
51, fity=1a=0
53. In Chapter 2, the stope of the tangun line to the curve y = /x

Ny
]+~—ﬁ— Computc th&
i

blope m. Gruph y = fand lh‘, lme with slope i through the
- point (1, 1)

50. fiy=114+2,a=0
COs2 fy=1a=1

at v =11s dyﬁned by m = Iun

54. In Chapter 2, an alternative form for the hlmt in exercise 53 is

. . X
given by lim -
. R a2l X —

r Compute this Jimit.

&_—a In exercises 55-62, use numerical evidence to conjecture the

value of the limit if it exists. Check your answer with your
Computer Algebra System (CAS), If you disagree, which one
of you is correct?

55, Lim (1 +.0"" 56. lim ¢' 57, Hm ¥
BT | .taﬂ* 1 v-aln .
58, lilal alnr - 89, llm sm— 00, lin‘a)e""‘
=0 . LRSS
1 .
61, limtan™' — 62, lll“ lul !
x—0 X o

It exercises 63—66, use hm f().) =2, limg(x)= -3 and
r—a

llm h(‘) 0 tc_) determine Ihe lmut, if possible,

63, lim|2 f(x}— 3g(x)] 64, lini[3 £ (x)g(0))

fim [IL‘M] 66 lim[MQ]

5. (v) h(x)

X X
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67, Assume that Iim Jx) = L. Use Theorem 3.1 to prove that _76. Supposc a staig’s income tax cede states that-tax liability is

hm[f(l)f = L‘ Also, show that hm[f(\)}“"

£29% on the first $20,000 of taxable carnings and 16% on
the remaiader. Find ¢onstanis ¢ and b for the tax function

How did you work exercise 67'? You probably used Theorem () = a+0.12x ifx < 20,000
3.1 to work from [:m[[(x}]2 =1t Iim[f(r)]3 = 1% and 4T b4 0160 - 20,000) ity > 20,000
then used hm[j (1)]‘ = L toget hmij(t)]4 L+, Going ene such lh'“ ,‘I_’,I.IJ‘ = O and, J%‘,‘@m Y cx]sis.}\(hy st

step at a umc, we should be db!c to reach lim[f{x)]" = L"
. L=

important for these lmms to exist?

for any positive integer n, This is the idea of mathematical 77. The greatest integer Function is denoted by f(x) = [x] and
induction. Formally, we need to show the result is true for a equals the greatest infeger that is less than or equal to x. Thus,
specific valee of n = ng fwe show np = 2 in the text], then [2.3] =2,{—1.2] = —2.and [3] = 3. In spite of this last fact,
assume the result is true for a general B = & = ng. If we show show that lim [+] does not exist.

that we can get from the result being true for # = & to the . o . .

reselt being true for n = & + 1, we have proved that the resalt 78, Investigute the “existence of (a) 11_1)1} fxl, (b} :l—i}-{]s['r]‘

is true for-any positive integer n. In one sentence, explain why
this is true. Use this technique to prove that lim[ f(x)])" = L”
X—=>a

for any positive integer nr,

Find all the errors in'the tollowing incorrect string of equalities:

1 x 1
lim — = Bm - — =limxlim— =0-7=0

(e) Jim 12}, md () Fim (x — fxi).

®

EXPLORATORY EXERCISES

o0y eedyt a0 a0y 1. The value x =0 is called a zero of multiplicity n(n = )
. Find afl the errors in the follo ct string of equalities; . N RN £ 9 B .
Findail the errors in the wing incorrect string of equalitics for the function f it th) exists and is nonzero bt
. sin2y O ( ) . R :
im =—=1, : . . s
) YIS 0 lm}| =0. Show that x =0 is a zero of multiplicity 2
. . . T+ _\.'

. Give an’ example of functions f and g such that for ¥2, x = 0 is a zero of mulhplluly 3for x* and x =0 is
Hmf () + g(w)Yexists bat liny £(x) and im g(x) donot exist. a zero of multiplicity 4 for x*. For po]ynomml&:, what does
Ghe ol of o /o g swh g PR der? Th wen e ein b ot
lim] f€x)~ g(x)] exists but at least one of lim f{x)and lim g{x ) e Sy > O o
:—ao[f( ) {;’( l : : ,r-»uf( ) x-)Gg{ ) polynomial fanctions, as well. Find the multiplicity of x =0
does not exist, for flxY=siny; f(x) =xsiny, f(x) = sinx2. If you know

, I limy f(x) exists and lim g(x) does not exist, is it always true that x = 0 is a zero of multiplicity mi for f(x) and multiplicity

A= Xovd . . I X v s N E -
that lim|[ f(x) + g(v)] does not exist? Explain. " tO]: (x), what cal you say tlbuut thL_ multiplicity of x = 0
e : for fx) + g{x)? flx} - g)? flg(x)?
. Is the following true or false? lflin}J Jx) does not exist, then ’ L Ginx
: . * 2. We have conjecliired l‘_hat‘iim. — =1 Using graphical
lim —— does not exist. Bxplain, 0 X ¢in 2
=0 f(x) : and numerical LVldCHLC Con_]eclun, the value of ]mé -,
-0 X

Suppose a state’s income tax code states the tax liability on x
doflars of taxable income is given by

o LS i 0 < x < 10,000
F = 11500 4021 if 10,000 < ¥

im T R 9 Bm oo
Con)pute.‘h)lg' Tlxy wh_y is this good C(nnpute_‘_)11731.1Om {x);

why is this bad?

@> §.4

n3x sinax inx
iun — llm and iml /
X X .

. In general, conjec-

. sinex .
ture the value of _hna ——— for any constant ¢. Given that
K X

v L _
) = | for any constant ¢ # 0; prove that your con-
-0 ey s

jecture is correct

et e M R

CONTINUITY AND ITS CONSEQUENCES

[

When you describe sometlung as continuois, Jmt what do you have in mind? For example,
if told that a machine has been in conlinnens operation for the past 60 hours, most of us
_would interpret this to mean that the machme hasbeen in ope_lallon alt of that time, wititout
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67.

68

69

70

71,

72.

3.

74

78,

®> .4

Assume “that hm J(x) = L. Use Thecrem 3.1 to prove that
hm[f(\)]3 L‘ Also, show that hm[f ()] =

How did you work exercise 677 You probably used Theorem
3.1 to work from Lim{f(.r WP =Lto lim[f ()] = L* and

then used hm{j(\)P = L} toget hm[f(r)}“ = L*.Going one

step at a lnne, we should be ab!e {o reach hm[ flol =L

for any positive integer s This is the idea ot malhemat:mt
induetion, Formally, we need 10 show the result is true for a
specitic vatue of n = ny fwe show ne = 2 in the text], then
assunig the result is true for a genetal 0 = & > ng. If we show
that we can- get from the result being true for n =k to the
resubl being true forn = k + 1, we have proved that the result
is true for any positive integer . In ‘one sentence, explain why
this is true. Use this technique to prove that -lin;[f(_t)j" = L"
for any positive integer n.

Find all the ervors in the following incorrect siring ofequ‘llmu

!
limx lim — =07 =0

o1 X
lim - =lim — =
2 =0 10X

1—0.x Tyt
Find all the errors in the tollown ngincorrect string of cqmlmcs

" sin2v 0 i

im ===

=0 X 0

Give an example of fanctions f and g such that

ling)if(.r) - g(x)] exists but lirulJ fix)and H"}; glx) do not exist.
L a—= X

Give an chainplc of* functions f and g such that
lli_lzb[j'{.r) - gl )] exists but at feast onr:of}i_% Fi{xyand El’})g(‘t)
does not exist.

I hm JLx) exists and }nm g(x) does not exist, is it always trae
1h'1t lnn[f(\) + g(\)} docs not exist? Explain,

Is the following true or false? If l:mﬂ J(x) does not exist, then
. —

lim
x—0 f X

does not exist. Explain.

Suppose a state’s income tax code states the tax liability onx
dollars of taxable inconie is given by '

0.14x if 0 <x < 10,000
1500+ 0.21x if 10,000 < x
Compute li%]+ T{x): why is this good? Compute
why is this bad?

T().=

lml T(\)

oty e e I S TR S A

76.

77.

78, :
(c) !i_l}liIZ.\'], and {d) l'{ml {x —[x]).
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Suppose & state’s income tax code states that tax liability is
12% on the first $20,000 of taxable earnings and 16% on

the remainder. Fird constants ¢ and b for the tax function

T(\') _Ja+ 0.[2.\‘ ity < 20,000
LT b4 060y - 20,000)  if x == 20,000
such lh_1l I:m T{x)=10 and ]i)‘IJ}!‘.mT(.\') exists. Why is it

imporiant tor lhysp limits to eust.’

The greatest in'_!cgér iflli1c£inrl is'deildted by f{x)y={x] and

equals the greitest integer that is less than or equal to x. Thus,

23] =2, [—1,2] = —2 and [3] = 3. ln spite of this last faci,

show that lin{ [x] does not exist.
X

Investigate the existence” of (a) {b).

liglel, ©) i)

1

@

EXPLORATORY EXERCISES

The valve x =0 is called a zero of wiultiplicity » (r > 1)

for the function N 1t111m L(n—) exists and s nonzero but
X

f) =0, Show that x = @ is a zero of muhtplicny 2

for x%, x =0 is.a zero of mubtipticity 3 for x* and x =0 is
a zero of nmbltiplicity # for x*. For polynomials, what does
multiplicity describe? The reason the definition is not as
straightforward as we might like is so that it can apply to non-
palynomial functions, as well. Find the multiplicity of x =0
for f(x) =siny; f(x) =xsinx; f(x) = sinx?. If you know
that x = { is a rero of multiplicity m for f(x) and multiplicity
n for g{x), what can you say about the multiplicity of x =0
for f{x)+ g flx)- ()2 f(g()?

sir .
We have conjeuured that lim = 1. Using graphical

=D

sin 2.1

and numerical evidence, conjeclun the value of lma

X-r X
. sindx sitry
Iim
x—=0 X

siny/2 - .
and 11m . In general, conjec-

a0 X r—0 X

. incx
ture the value of hm :

520

‘ for any constant ¢. Given that

sincx

= §for any constant ¢ # 0, prove that your con-

7 BT R AR AL S P

CONTINUITY AND ITS CONSEQUENCES

When you describe something as continuons, just what do you have in mind? For example,
if told that a maching has been in continuons operation for the past 60 hours, most of us
would interpret this to mean that the machine has been in operation all of that time, without
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substituting in.

CHAPTER |+

The definition of continuity all
boils down to the one condition
in {ii1), since conditions {i} and
(i) must hold whenever (i} is
met. Further, this says that a
function is continuous at i point
exactly when you can compute
its limit at that point by simply

Limits and Continuity

126

any interruption at all, even for a moment. Mathematicians ruean much the same thing when

. we say that a function is continuous. A function is said to be continuous on an hiterval if its

graph on that interval can be drawn without i mtcmlpuon tint is, without lifting your pencil
from the paper.
"It is helpful for us to first try to see what it is ahout the finctions whose graphs are

" shown in Figures 1.22a-1.22d that makes them drswmmumw {i.e., not contmuous) at the

pOHll xr=d.

N

N

— > x

a .’

FIGURE [.22b

FIGURE 1.22a fta)isdefined, but lim f{x)does

ou
. fla)is not defined (the graph nol exist (the graph has a jump at
has a hole at v = a). : X :a)
) ¥
]]\ 4
Fla)d " !

E— H /
}
a Sl

FIGURE 1.22¢
hm f(x) exists and f(a) is defined,

but 11m F{x} £ far) (the graph has
a hole at x = a).

FIGURE [.22d
lim f(x} does not exist {the

¥y

t'unc;ion “blows up” aty = a).

This suggests the following definition of continuity at a-point,

BEFINITION 4.1

A function f is continuous at x = ¢ when
(i} fa)is defined,” (ii) lim J(x) exists and (111) hm f{x)—— fla)

Otherwise, f is said to be (hscon(muous atxy =

For most purposes, il is best for you to think of the intuitive notion of continuity
that we’ve outlined above. Definition 4.1 should theri simply follow from your intuitive
understanding of the concept.




i - » X

FIGURE 1.23
242r—3
- r—1

confuse the continuity of a
function at & point with its
simply being defined there. A
function can be defined at a
point without being continuous
¢ there, (Look back at Figures
1.22b and 1.22¢)

f

B N
- :

FIGURE 1.24
y=glx}

You should be careful not to -

" Solugion Nole that

“in Figure 1.23. So, f is discontinuous at x = I, but continuous elsewhere. . ]

SECTION 1.4 " += Continuity ard its Consequénces 9%

EXAMPLE 4, § F|nd|ng Where 2 a , Rational Funcnon Is Contmuous

2 4 2y
-1“-— is LOI]EHILEOLES

Determine where f{x) =

X =3 (v = B +3)
7 xr=1 r=1

=1+3f0r1¢1 : o

i

This says that the graph of f is a straight lire, but with a hole in it at x = 1, as indicated

2 4.2 - Removing a Discontinuity

Make the function from example 4.1 continuous evuywheu. by lcclchnmg it at a single
poii,

Solution  In example 4.1, we saw that the function is discontinuous at x = 1, since it
is undefined there. So, suppose we just go ahead and define it, as follows. Let

P42y —3
gy=1 Ty o AL

a ify =1,
for some real number a.
Notice that g(x) is defined for all x and equals- f(x) for afl x »,4 1. Here, we have
3+ 2 3
=1
= 3;11} (x +3)= 4.

hm glx) = 11m

Observe that if we choose ¢ = 4, we ndw h:avc‘[hal :
!im1 g(xy=4 = g(l1)
X—
and so, g is continuous at v = 1. : t
Note that the graph Ofg is the same as the graph ofj seen in Figure 1.23, except that
we now include the point (1, 4) (see Figure 1.24). Also, note that there’s a vt,ry simple
way to write g(x). (Think about this.) # A S

When we can remove a discontinuity by redefining the funcuon al that point, we
calt the discontinuity removable, Not all discontinuities are removable, however, Carcfully
examine Figures 1.22a—1.22d and convince yourself that the discontinuities in Figures 1.22a
and 1.22¢ are removable, while those in Figures 1.22b and 1.22d are nobremovable. Briefly,
a function f has a removable discontinuity at x = a il hm S(x) exists and cither f(a) is

undefined or. 1111 S(x) # fla).

A R

}(:"\MPL 8

Nonremovable Dlscontmultles

4.3 ;;7 “

| : 1
Find all discontinuitics of f(x) = 3 and g(x) = cos (T) .
kY ) x




FIGURE 1.25b
y =cos(l/x)

100 CHAPTER | =+ Limits and Continuity .1-28
f’ afuttons  You should observe from Figure 1.25a (also, construct a table of function
1 values) that '
H E
lim ~% does not exist.
! =0 x2
Hence, f is discontinuous at x = 0.
T Similarly, observe that h“{, cos(l/x) does not emqt due to the cndkss oscillation of
27 © ¢os{l/x) as ¥ approaches-0 (see Figure 1.25b). ‘
St \ In both cases, nolice that since the limits do not exist, thcrc is no way to rdehnc
L o cither function at x = O to make it continuous there. e e s L
— i —A e
-3 "3
FIGURE 1 ,25a . From your experience with the gmphs of some common ium,uom the followmg result
1 should come as no surprise.
y=a
t X
H LQRLM 4 I _
All polynomials are continuous everywhere. Additionally, sinv, cosx, tan~! x and e
are continuous everywhere, ¥/x is continuous for all x, when # is odd and for
x > 0, when # is even. We also have In.x is continuous for x > 0 and sin”! x and
cos™! x are continuous for -1 < v < 1,
; P OSSPSR OGS S . e
-0.2 0.2.
PROOF
We have already established (in Theorem 3.2) that for any polynomial p(x) and any real
nwmnber g, -

lim p(x) = pla),

from which it follows that p is continuous at x = . The rest of the theorem follows from
Theorem 3.4 in a similar way. = =

From these very basic continuous functions, we can build a targe collection of contin-
uous functions, using Theorem 4.2,

THECOREM 4.2 . e

Suppose that f and g are continuous at v = «. Then all of the following are true:

(i) (f £ g)iscontinuous at.y = a,
(i) (f - g)is continuous at v = ¢ and
(i) (f/g)is continuwous at v = a if gla) # (.

Simply put, Theorem 4.2 suys that a sum, difference or product of continuous tunctions
is continuous, while the quotient of two continuous lunctlons is continuous at .'my point at
which the denominator is nonzero.
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PROOF

(i) If £ and g are continuous at x = a, then
[ Fev) E g(o)] = him f(6) & Hm g(x)  ves s
T—=ra I—a X
= j‘(a) ﬂ’: g(ﬂ) . . ) STTEECS SEI B AT E RTE L IIEN
= (f £ g)la)

* by the usual rules of Hmits. Thus, ( f + g) is also continuous at ¥ = a.
Parts (ii) and (iii) are proved in a simitar way and are left as exercises. R

¥ . = N S ot s e s R
-4 EXAMPLE 4.4 Continuity for a Rational Function
150+
. : i .2
] \ ) ) X% 3t 2
100+ Determine where f is continvous, for f(x) = —',——;—4.
Rl |
\\ 50+ Selution  Here, f is u quotient of two polynomial (hence continuous) functions. The
L e graph of the function indicated in Figure 1.26 suggests a vertical asymptote at around
10 -5 ) - x = 4, but doesn’t indicate any other discontinuity. From Theorem 4.2, f will be
=50 - continuous at all x where the denominator is not zero, that is, where
—~100+ -
W= 3x b= D -4 #0.
—-150+ ' o :
: Thus, f is continuous for x # —1, 4. (Think about why you didn’t sce anything peculiar
FIGURE 1.26 _ about the graphiat ¥ = — ) B
P L) )
Y= : . - . . .
WP =3y -4 With the addition of the result in Theorem 4.3, we will have alt the basic tools needed

1o establish the continuily of most elementury functions.

THEGREM 4.2

Suppose that lim g{x) = L and f is continuous at L. Then,
X—=d -

lim /() = £ (lin () = £CL).

N ekt vt £ re0n vt < ki £ A 4 S A o8 17 B LF e o e b o Y A5 S AR i Akl S

A proof of Theorem 4.3 is given in Appendix A.

Notice that this says that if f is continuous, then we can bring the limit “inside.”
This should make sense, since as x — a, glx} — L and so, f(g(x)) — f(L} since f is
continuous at L. .

COROLLARY 4.1

Suppose that g is conlinuous at ¢ and. f is cohtinuous at g{a). Then, the composition
© f o g is continuous at . -
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FIGURE 1.27

f continuous on {a, b]

FIGURE 1.28
¥y = 4 52

- by Theorem 4.1 and Corollary 4.1. Finally, we test the cndpomle to sec that

PROOF

From Theorem 4.3, we have _ _
- lim(f 0 g)) = lim F(g6x)) = f (Tin ()
= f(g(ti')) = (f o] g)(ﬁ) [T E RN HAPTEASE |

T

B AN

Determine where (x) = cos(x® — 5x -+ 2) is continuous.

Continuity for a Composite Function

Sofution  Note that
h(x) = flgl)y

where g(x) = ¥ — 3y 4+ 2and fx)=cosx. Smcc both f and g are continuous fm '11]
x, hris continuous for all x, by Coroltary 4.1, e R

BEFINITION 4.2

If f is continuous at every point on an open intervai (¢, &}, we say that fis
continuous on {4, b). Following Figure 1.27, we say that / is continuous on the
closed interval [a, b), if [ is continuous on the open interval (¢, b) and

lim+ fx)= f(@) and li_!_}l_ f) = f).

Finally, if f is continuous on all of (—o0, c0), we simply say.that f is continuous,
(That is, when we don’t spec:fy an interval, we mean coniinuous ever ywhcrc )

For many functions, it’s a simple matier to deteriming the imcrvals on which the function
is continuous, We illustrate this in example 4.6. ’

B AMP o Céntinuity ona Closeaﬂin_ter\(al o

Determine the interval(s) where f is continuous, for f(x) = /4 — x2.

Sielution  First, observe that f is defined only for —2 < x < 2. Next, note that i the
composition of two continuous functions and henee, is continuous for all v for which
4 — x? = 0. We show a graph of the function in Figure 1.28. Since

4-22%0"

for —2 < x < 2, we have that f is continuous for all x in the interval (—2, 2),

lim v4 —xT=0= f(2) and 11m JE—x1=0= f( 2), oﬂﬂtf is continuous

(2=

on the closed interval [—2, 21, 8. e i e

lnterval of Contmmty for a Logarlthm

Determine the interval(s) whew fx)y=Inlx —3)is continuous.

Solution It follows fmm Theorem 4.1 and.C01ollfn'y4 i thi\t £ is continuous whenever
(1 - 3) = 0 (i.e., for x = 3). Thus, f is continuous on the interval G <) T = E—
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The Internal Revenue Service presides over some of the most despised functions in
existence. Look up the current Tax Rate Schedules. In 2002, the fivst few lines (for single

‘taxpayers) looked like:

For taxable amount over | -biuf not ever | your tax liability is 'n;:'f'mi_s"'
50 . - $6000 | 10% S0
$6000 . $27,950 1% . 5300
$27,950 R $67.700 .| 27% o | s3654

Where do the numbers $300 and $3654 come from? IT" we write the tax tiability T(x) as
a function of the taxable amount x (assuming that x can be any real value and not justa
whole dollar amount), we have

0.10x if0 < x < 6000
)= { G.15x - 300 if 6000 < v < 27,950
0.27x — 3654 if27,950 < x = 67,700.

Be sure you understand our transkation so far. Note that it is important that this be a contin-
uous function: think of the fairness issues that would arise if it were not!

EXAMPLE 4.8 Contmwty of Federal Tax Tabies .

Verify that the federal tax rate function T(x) is continuous at the “joint" x - 27,950,
Then, find a 10 complete the table. (You will find b and ¢ as exercises.)

For'_m_;\"('ible amount over | bul not over | your tux lability is - mi:ms.
" $67,700 S5141,250 30% ) a

$141,250° . 5307,050 | 35% b

$307,050 . — + 38.6% ¢

Holution  For T{x)to be continuous at x = 27,950, we must have

lim  T(x)= tim T'(.l‘)..
x—27,950" ] x-+37950+ -

Since_ both functions 0. t5x — 300 and (}.27.\' — 3654 are continuous, we can computé

the one-sided limits by substimling x = 27,950 ']‘hus

51711'350 T(v)=0,15(27, 95{)) 300 = 389250

and 111115 T(x)==0. 27(27 950} — 3654 = 3892.50.

=27
Since the one-sided limits agree and equal the value of the function at that point, T{x)
is continuous at x = 27,950, We leave it as an exercise o establish that T'(x}is also
continuous at x = 6000, (It’s worth noting that the-function counld be written with
equal signs on all of the inequalitics; this would be incorvect if the function were

discontinuous.) To complete the table, we choose @ to get the one- sidcd hmlts at
X = 67,700 to match, We have

lim  T(x) = 0.27(67,700) — 3654 = 14,625,
x—67,7007 ) -
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while lim  T(x) = 0.30(67,700) - a. = 20,310 — a..
X—67,700¢ _ :

So, we set the one-sided limits equal, to obtain

14,625 = 20,310 — a-

or @ =20310 — 14,625 = S685.

Theorem 4.4 should scem an obvious conscqucme of dur intuitive definition oi conti-
nuity.

: HISTQRICAL NQ ?‘Efy T HFGRL M 4.4 (Inten medlate Va!ue Them em)

Kar Welerstrass (|31 5 1397) Suppose that f is continuous on the closed mtcw.tl [, b] and W is d!l)’ ninber

A Gérman mathematICIanwho i between j(a) and [ (b) Then, lhere is a number ¢ € [a b] for which® f (cy=W.

’ Eproved thB !ntermed[ate\fa[ue e e e e+ et oo <ot b0n e 51 S a8 £ S A s < 1 Hram 1 st 1 e e Bt A s a4 e s = Sk T
__Theorem and seve{al other B
“fundamental resuks of the <

- calculus. Welerstrass was known © " Theorem 4.4 says that if f is continuous on [a, b}, then f must take on every value between
as an excellent teacher whose - f(a) and f(b) at least once. That is, a continuous function cannot skip over any. numbers
. students circulated his 1ecture ~i: - between its values at the lwo endpoints. To do so, the graph would need to leap across the
. notes throughout Europe, - horizontal line y = W, something that continuous functions cannot do (sce Figure 1.2%a).
because of their clarity and_ - Of course, a function may take on a given vatue W more than once (sec Figure 1.29b). We
originality. Also knownasa . - must point out that, although these graphs make this result scem reasonable, like any other

superb fencer, Welerstrasswas — — reqqlt, Theorem 4.4 requites proof. The proof is more complicated than you might imagine

one of the founders of modern and we musi refer you to an advanced catculus text..
mathernatical analysis. - - :

}l " : ’ ) .}I
F Y . >
S(B} Sy el
W= fl : 7
= C) } _ _ . v
a : (]
} b X } —ri >
: c b / oy b :
o s fa) ' ) / N PiL]
FIGURE 1.292 ~ FIGURE 1.29b
- An illustration of the Intermediate © . 'More than ong value of ¢
Value Theorem

In Corollary 4.2, we see an immediate and useful application of the Intermediate
Value Theorem.
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COROLLAIY 4.2 | e

Suppose that f is continuous on [a, b] and f(a}and f (b) have opposite signs [i. c',
fa)- f(b) < O] Then, there is at least one number ¢ € {a, b) for which f (¢) ==
(Rccqll that ¢ is then a zero of f. ) ! :

Notice that Corollary 4.2 is simply the special case of the Intermediate Value Theorem
where W = 0 (see Figure 1.30). The Intermediate Value Theorem and Corollary 4.2 are
examples of existence theorems; they tell you that there exists a number ¢ sahsfymg some
condition, but they do sof tell you what ¢ is.

df et f(@)
' O The Method of Bisections

In example 4.9, we sec how Corollary 4,2 ¢an help us locate the zeros of a finction.

FIGURE .30
Intermediate Value Theorem where
cisazervof f

ERERR SR RRE T -

EXAMPLE 4.9 Fmﬁing Zérrcrasiby the Method of Blsectlons
hnd the zeros of f(v) = x- +41 - 9x + 3.

. Soletion  If f were "1quadmt1c polynomial, you could ccrtami) Im(l its zeros.

20+ However, you don’t have any formulas for finding zeros of polynomnls of deglee 5.
\ ' The only alternative is to approximate the zeros. A good starting place would be to draw

at : a graph of y = f(x) like the one in Figure 1.31. There are three zeros visible on the

\ graph. Since f is a polynomial, it is continuous everywhere and so, Corollary 4.2 says
that there must be a zero on any interval on which the function changes sign. From the
2 graph, you can see that there must be zeros between —3-and —2, between 0 and 1 and
between 1 and 2. We could also conclude this by computing say, f{0) = 3 and
F(1) = — 1. Although we’ve now found intervals that contain zeros, the guestion
remains as to how we can find the zeros themselves,

While a rootfinding prograim can provide an accurate approximation, the issue here
is not so much to get an answer as it is to understand how to find one. We suggest a
simple yet effective method, catled the method of biseetions.

For the zero between O and 1, a reasonable guess might be the midpoint, 0.5, Since
F(0.5) = —0.469 < 0 and f(0) = 3 > 0, there must be a zero between 0 and 0.5. Next,
the midpoint of [0, 0.5} is 0.25 and f(0.25) = 1.00t = 0, so that the zero is-on the
interval (0.25, 0.5). We continue in this way to narrow the interval on which therc’s a
zero until the interval is sufficiently small so that any point in the interval can serve as

_an adequate approximation to the actual zero, We do this in-the following table.

—10+

. 720.‘.

FIGURE 1.31
y=rt 4+t —9x+3

ao| g S | by | Midpoint - | f(midpoint)
0 1 3 1t . fos ~0,469
0 0.5 - 3 —0.469 | 025 1001
0.25 0.5 1001 | —0469 ° | 0375 0.195
0.375 0.5 0.195 | —0.469 | 04375 0156
0.375 0.4375 0.195 | —0.156. | 0.40625 0.015
040625 | 04375 0.015 | ~0.156 | 0:421875 ~0.072
040625 | 0421875 0.015 | —0.072 | 04140625 ~0.029
040625 | 04140625 | 0.015 | —0020 | 041015625 | —0.007
040625 | 041015625 | 0.015 | —0.007 | 0408203125 0.004

If you continue this. process through 20 more steps, you ultimately arrive at the

approximate zero v = 0.40892288, which is accurate 1o at least eight decimal places, #...
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“This method of bisections is a tedious process, if you’re working it with. pencit and
paper. Tt is interesting because it's retiable and it’s a simple, yet general method for finding
approximate zeros. Computel and calculator rootfinding utilities are very usefal, but our
purpose here is to provide you with an understanding of how basic moilmdmg works. We
discuss a more powerful method for hndmg roots in Chapter 3

%)

Q) WRITING EXERCISES

1. Think about the following “real-life” functions, each of which
is a function of the independent variable time: the height

of a falling object, the velocity of an object, the amount of

money in-a bank account, the cholesterol level of a person,
the heart rate of a person, the amount of a certain chemical
present in a test tube and a machine’s most recent measure-
ment of the cholesterol level of a person. Which of these are

continupus functions? For cach function you identity as dis-
continuous, what is the real-life meaning of the discontinu-

ities?

2. Whethet a process is continuous or not is not always clear-cut.
When you watch television or a movie, the action seems to
be continuous; This is an optical illusion, since both movies
and television consist of individual “snapshots™ that are played

back al many frames per second. Where does the illusion -

of continuous motion come from? Given that the average

person blinks several times per minute, is our petception of

the world actually vontinuous? (In what cognitive psychol-
ogists call temporal binding, the human brain first decides
whether a stimulus is important enough to merit conscious
consideration. If 50, the brain “predates” the stimulus so that
the person correctly idéntifies when the stmmlus actually oc-
curred.) -

o

cil or pen, is your sketeh (at the molecular level) actually the
graph of a continwous function? Is your calculator or com-
puter’s graph actually the graph of a continuous function? On
many caleulators, you have the option of a connected or dis-
connected graph. At the pixel level, does a connected graph
show the graph of a function? Does a disconnected graph show
the graph of & continucus function? Do we ever have prob-
lems correctly interpreting & graph due to these limitations? In
the exercises in section 1.7, we examine one case where our
perception of a computer graph depends on which choice is
made.

4, For each of the graphs in Figures 1.22a~1,22d, describe (with

an exaraple) what the formula for f(x) 1mght look like to pro- .

duce the given dtsconunuuy

When you sketch the graph of the parabola y = x? with pen-

lu exercises I- -+6,.use the given l,mph to identify all discontinu-
mes of the functions.

I.. ¥
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In exercises 7-12, explain why each function is discontinuous at
the given point by indicating which of the three conditions in

Definition 4.1 are not met,

T fl)=

X
ata =1
x—1

1
9, f(x)=sin—atx =0
X

x? ifx <2
10 f()y=13 ifx =2
3x—2 ifx=>=2.
2 Iy
R ifx <2
1. SO =132 ifx»2

2

8 S =
10. fixy=eYatx =0

atr =2

atxy =2

13 ) = ;‘z;_"

aty =1
1

SECTIOM 1.4 ¢« Continuity and its Consequences 107

In exercises 13-24, find all discontinuities of f(i-). For cach dis-
continuity that is removable, define a new function that removes

the discontinuity.

I .
..
S dy

15, f{x) = yei i

1. f(x) = x2tanx. .

19, fe)=xnx?

X—n

4x
4, f(v)= ————-
.f(‘) —,‘2 h}- .‘: _-‘.2
: - 3x
1 . X) = A —
b JQ) = ey

: 18, flx)=xcotx
. fy= eV

. sinv
20 gy =2y vsl n fw=] 5 O
x* ify=1- - e
. : ) 1 ifx=10
: 31 ifxs -1 '
23, f) =3 x5 i —l<x<i
KIS ity > 1
. 2y - ify <0
24, f(x)=qysinx 0 <x<xw

Cifxe

In exercises 25-32, determine the intervals on which f{x) is

continuous,
25, fo)=Va+3d
27, ()= +2

.29, F(x) = sin(x?+2)

31. fla)y= in(_r + 1)

20, flx)=Jx?—4
28, fl)=(x— 1V

: 30, ﬂ;‘.) = (05 (i—)
3. [ = - 1)

In exercises .33—35', determine values of ¢ and b that make the

" given Fanction continuous. -

28*?” Cifx <0
Bof@=1a" ir=0
beosy ifx >0
ae’ + I ity <0
M. f(x) = { sin”! % o<y <2
KX 4h ifxe2
attan ' v +2) ifx <0
35, flx)y= {2 +1 ifo<x <3
In(x -2 +x% ifx>3

36, Prove Corollary 4.1.

37. Suppose thal a stute’s income tax code states that the tax lia-
bility on x dollurs of taxable income is given by

10 fr=0
Tixy= ¢ 0.F4x it0 < x < 10,600
e+ 021 if 10,000 < x,

Determine the constant ¢ that makes this function continuous
for all x. Give a rationale why such a tunction should be con-

tinuous.
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38. Suppose a state’s income tax code states that tax liability is
12% on the first $20,000 of taxable earnings and 16% on the
remainder. Find constants @ and b for the tax function

0 ifx <0
Ty ={a+012x if0 < x < 20,000
b - G.16(x — 20,000)  if x > 20,000
such that T'(x) is cantinuous for alk x.

39. Inexample 4.8, find & and ¢ to complete the table.

40. Inexample 4.8, show tat T{x)is continuous for x = 6000.

@ In exercises 41-46, use the Intermediate Value Theorem to ver-
ify that f{x) has azero in the given interval. Then use the method
of bisections to find an interval of length 1/32 that contains the
Zero,

4L )y =22~ 7,(2,3]

42, fx)y=x" X"
43, fx)=x'—-dx-2,[-1,0]

—dy —2,12.3]

dd, fy=x'—dxr-2,[-2,—1]
45. f{x)=cosx —ux, [O. 1]
46, f(x)=e' +x,[-1, 0

A Ffunction is continuous from the right at ¥y =a if
Iim+ Jlxy = fla) In exercises 47-50, determine whether fix)
X—a

is continuous from the right at x = 2,

0 e | Hx<2
A TN
2o ifr <2

48. fx)=43 fa=2
v =3 ifr=2

o o | irx<2
s SO = 3x—3 ifx>2
50, f(x) = L ity <2
RAC A EOIP

51, Define what it means for a function to be continuous from
the feft a.x = a and determine which of the functions in ex-
ercises 47-50 are continuous from 1he leftatx =2,

géx

52, Supposa ﬂnt f{r) T; and fi{a) == 0. Determine whcther
"

eachof the following statements is always true, always false, or
maybe true/maybe false. Explain. (a) lim f(x) does not exist,

{(b) f(x) is discontinuous at x = a1.

I-36

83, The sex of newborn Mississippi alligators is determined by the
temperature of the eggs in- the nest. The ‘eges fail 1o develop
unless the temperature is between26°C and 36°C. All eggs be-
tween 26°C and 30°C develap into females, and eggs between
34°C and 36 C developinto males, The percentage of females
decreases from 100% at 30°C 1o 0% at 34°C. It f(T) is the
percentage of females developing from an egg at 7°C, then

100 if26<T <30
fT=1g(T) f30<T <34
¢ if34 < T <36,
for some function g(7}. Explain why. it is reasonable that
J(T) be continnons. Determine o function g(T) such that
0 < g(T) < 100 for 30 < 7 < 34 and the resulting function
S(T) is continuous, (Hint: It may help to draw a geaph first
-and make: g{7") linear.]

X X, ifxA0Q
S, If fx) = and g{x} = 2x, show that

4, ifxr=0
i (g0 # £ (T gt).

55, If you push on a lurge box resting on the ground, at first noth-
ing witl happen because of the static friction force that opposes
mation. If you pusk hard enough, the box will start stiding, al-

_though there is again a friction force that opposes the motion.
Suppose you are given. the following description-of the fric-
tion force. Up to 100 pounds, friction matches the force you
apply to the hox, Over 100 pounds, the box will move and
the friction foree will equal 80 pounds. Sketch a graph of fric-
tion as a function of your applied force based on this descrip-
tion, Where is this graph discontinuous? What is significant
physically about this point? Do you think the friction force
actually ought to be continuous? Medify the graph 1o make
it continuous while still relmmng most of the clnmctcnstlcs
described.

400 -
56. For f{x)=72x — ——, we have f(~1}> 0 and f(2) < 0.
v

Does the lmt,rmeth"ttc Value Theorem guarantee a zero of
f(x) between x = —1 and'x = 2?7 What Imppem if you (ry
the method of bisections?

57, On Monday morning, & saleswoman Jeaves on a business trip
at 7:13 As and arrives it her destination at 2:03 v.». The fol-
lowing moming, she leaves for home at 7:17 A M. and arrives
at 1:59 pM. The woman notices that at 'a particular stoplight
along the way, a nearby bank cléck changes trom 10:32 AM. to

. 10:33 A.M. on both days. Therefore, she must have been at the
same locution at the sume time on both days. Her boss doesn't
believe that stch an unlikely coincidence could oceur. Use the
Intermediate Value Theorem to argue that it must be true that
at someé point on the trip, the saléswoman was at exactly the
same place at the same time on both Monday and Tuesday.

Suppose you ease ymirlcm’ 1ip to a stop sign at the top of a hill.
Your ¢ar rolls back a couple of fiet andt then-you drive through

wn
®
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59.

60
61
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64.

65.

66

67

] 68

the intersection. A police officer pulls you over for not com-
ing to a complete stop. Use the Intermediate Value Theorem
to argue that there was an instant in time when your cuar was
stopped {in fact, there were at least two). What is the difference
between this stopping and the stopping that the police officer
wanted to see?

Suppose a worker's salary starts at $40,000 with $2000 raises
every 3 months, Graph the salary function s(r); why is it discon-

: . 2000 .
tinuous? How does the tunction f{1) = 40,000 + — ¢ (rin

months) compare? Why might it be easier to do ca]cu'lmi(_ms
with f{¢) than s(#)?

Prove the tinal two parts of Theorem 4.2.

Suppose that f(x) is & continuous funciion with consecutive
zeros at v =a and x'==b; that is, f{a)= fby=0 and
Fixy=£ 0 for a < x < b. Further, suppose that f{c)} > 0 for
soie number ¢ between g and b, Use the Intermediate Value
Theorem to argue that f(x) > Oforallg < x < b, '

Use the method of bisections fo estimate the other two zeros
in example 4.9.

Suppose that f{v) is continvous at v =0, Prove that
]in(l) xf(x) =0,
T

The converse of éxercise 63 is not true. That is, the thet
hm S (x) = 0 does not-guarantee that f(x) is continuous at

.1 =0, Fmd a counterexample; that is, find a function f such
that ling).rf(.\') = (land’ f{x) is not continuous at x = 0.
e

If f{x} is continuous at x'=a, prove that g(x) = |f{x})| is
COMInons at v = ¢.

Determine whether the converse of exercise 65 is true. That is,
if | f{x)| is continusus atx = @, is il necessanly true that f{x}
miist be contimious at x = a?

Let f{x) be a continuous function for x > a and define
{x) = m'\x fu). Prove that fi(x) is continuous for x > a.
Would lhls bll“ be true without the assumplmn that f(x) is
continwous?

sm|1 — 3x% 4 2x|

Graph f(x) = T3 x 2 and determine all discon-

tinuities,

(0

L ]

EXPLORATORY EXERCISES

. In the text, we discussed the use of the method of bisec-

tions to find an approximate solution of equations such as
FO) =x* - 5x — | = 0. Wecanstart by noticing that f(0) = —|
and f{1) = 5. Since f{x}iscontinnous, the Intermediate Value
Theorem tells us that there is a sobution between x = 0 and

T o R T s 2 y e

b e
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x = I, For the.method ot bisections, we guess the midpoint,
x =10.5. Is there uny réason to suspect that the solution is ac-
tually closer to v = (thanto x = 17 Using the function values
J0) = =land f{1) = 5, devise your own method of guessing
-the location of the solution; Generalize your method to-using
S dnd f(b), where one ‘function value is posm\’e and one
is negative. Comp'trc your method to the method of bisections
onthe problem x? + 5x - I-= 0; for both methods, stop when
you are within 0.001 of the solation, x & 0.198437, Which
method performed betfer? Before you get overconfident in your
methed, compure the two methods again on xSt 1=0
Does your method get close on the first try? See if you can de-
termine graphically why your method works better on the first
problem. '

Z. ‘You have probubly seens the turntables on which luggage ro-

tates al the airport. Suppose that such a urntable has two long
straight parts with a semicircle on each end (see the figure).
We will model the lefUright movement of the luggage. Sup-
pose the straight part is 40 fi long, extending from v = =20 10
x =20, Assume that our luggage starts at time 1 = O at loca-
tion x = —20, und that it takes 60 s for the luggage to reach
x =20, Suppose the radius of the c_iréulm‘ portion is 5 it and
it takes the luggage 30 s 10 complete the half-circle. We model
the straight-ling motion ivitll a linear function x{f} =ar + .
Find constants a and & so that 1(0) = —20 and x(60) = 20.
For the circular motion, we tise a cosing (Why is this a good
choice?) x (1) = 20'+d - cos (et + ) for constants o, e anct f.
The rcquiremeﬁts are x(G0) = 20 (since the motion is continu-
ous), x(75) = 25 and x(90) = 20, Find values of 4, ¢ and f to
make this work. Find équations for the position of the luggage
along the backstreteh and the other semicircle. What would the
motion be from theaon?

Luggage carousel

3. Determine afl x's for which each function”is continuous.

- |0 ifxis irrational
f@=q. o0 .
x i xisrational
2(x) = ¥ + 3 ifxis irrational
if x is raticnal and
cosdx it x is irrational
Mx)y=9§.."
sinda ifx 15 rational

e 93 S TR i
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e } =—4—»x
-3 N \\ —x 3
Jix)} \
_]0 L
FIGURE .32
i 1
hrg+ — = 00 and hm - =0
1
v z
ix
0.1 10
0.01 100
0.001 1000 -
0.6001 10,060
0.00001 | 100,000

It may at first seemn
. o
contradictory to say that lim —
X .lfvtlf X
does not exist and then to write

fim — == o0. Note that since
-0t X

oo is ne! a real number, there is
no contradiction here. (When
we say that a limit “does not
exist,” we are saying that

there is no real nwmber L that
the function values are
approaching.) We suy that

lim —=ocoto :ndw'uc that as
B e L

x — 0%, the tunction values are
increasing without bound.

LIMITS INVOLVING INFINITY ASYMPTOTES

" Tn this section, we revisit some old limit problems to give more informative answers and
- examine some related questions. '

EXAMPLE 6.1 A Slmple Limit Revisited

: 1
Examine lim —

t—»t‘

Salution  Of course, we can draw a graph (see Flgu:c I. 32) 'md compuie a table of -
function vatues easily, by hand. (See the tables in the margin.)

While we say that the limits lng —and lim — donol cxist, the behavior of the
¥—=0t Y =0 X

. . 1
function is clearly quite different for x > 0 than for .x < (. Specifically, as x — L 0t —
X
‘ . s 1
increases without bound, while as x — 07, — decreases wnthom bound. To
communicate more about the behavior of the Iuncllon near v = 0 we write
.| '
lim — =co : (5.1)
=0t v .
.- . .
and m — = —x. (5.2)
=0 X

Graphically, this says that the graph of 'y = — approaches the vertical Jine v = 0, as.~

x —» 0, as seen in Figure 1.32. When this occurs, we say that the'line x = 0 is a vertical
asymptote, It is imporiant (o note that while the limits (5.1)-and {5.2) do not exisi, we
say that they “equal” oo and --oo, respectively, only 1o be specilic as to why they do not

" exist. Finally, in view of the one-sided limilts (5. I) and (5.2), we say that

1
lim — does not exist,

A0 x o S OO

anzEs o I

\MM E .s.) A Functlon Whose One Slded lelts Are Both Inflmte

o1
Evaluate lim —.
x>0 .1‘2

Sojution  The graph (in Figure 1.33) scems o indicate a vertical asymptote at x = 0.

A table of values is easily constructed by hand (see the accompanying tables).

0.1 100 —0.1 11073
0.0t 10,000 —-001 10,000
0.001 Ix 108 —0.001 1% 108
0.0001 1 x 108 -0,0001 1 x 103
0.00001 I x10W —0.00008 | 1 0¥
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lim -l— = 00
-0y
¥
Iy
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5 3
x—+ .\\ .
—— = —» X
5 X 10
—54
—10+ f(‘)l ;
FIGURE 1,34
. I
Jlirg (!.fS)j = ¢ and
o (Tfs)— =
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From this, we can see that

. 1
im — =00
=0ty
1 .
and ) lim — = oo
. . iy

Since both one-sicdted limits'agnjcc {i.c., both tend to.00), we say thal:
B

lim - = co.
-0y

This one concise statement says that the limit does not e;\lsl bust 1150 that f(x) has a
vertical asymptote at v = 0 where f(x) — oAy X > 0 flom either side. #. ,,,,,1,,,,_,,,,

Mathematicians try to convey as much in formation as possible with as few symbols as

4 1
possible. For instance, we prefer to say ]m‘(l) = = oc rather than lim — does not -
i :

T-OI

exist, since the first statement not only says lhfﬂ the limit does not cu-qt but also says
that — increases without bound as x approaches 0, with x > Qorx < 0.

FEmp——

HXAMPLE 5.3 A Case Where Infinite One-Sided Limits Disagree

1
Evaluate hm —_—
w5 (x = 5)%
Holucion  In Figure 1.34, we show a graph of the function, From the graph, you should

get a pretty clear idea that there's a vertical asymptote at x = 5 and just how the

function is blowing up there ({o oo from the right side and to —co from the left). You
can verify this behavior algebraically, by noticing that as x — §, the denominator
approaches 0, while the numerator approaches 1. This says that the fraction grows talgc

in absolute value, without bound as x — 5. Specifically,”

asxy —>» 5"’; (v — ) = 0. and (v — 5)3 > 0.

We indicate the sign of each factor by printing a small -+~ * sign above or be]ow

each one. This enables you to sce the signs of 1!1; \fduouq teuns at a glance, In this case,
we have

+
im -—— =00, s Y
=5t (x — 5Y e
+
Likewise, as x5 @-5%—>0 and (x—5°<0.
In this case, we have
. .
1 T
M —ee— = =00, New e 8 Sy
A—=5T (X — 5) '
- !
Finalty, we say that lith —————: does nol exist,
R (1 — ) )

since the one-sided limits are different. & .. . ool o]
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FIGURE 1.35

X
lim ———————— does not exist.
=2 (v — 3)(v +2)

v
-

L L b s
NI R
3
(7
N

FIGURE 1.36 -

y= tan.x

_ E 5(1 Q‘M PLL .;.4 Another Case Where ;ﬁflnite One Slded lelts Dlsagree

" Bvalvate llm tan.x,

Solution  Notice from the glaph OF{he fanction shown in } igure 1,36 that there appears

Learning from the lessons of examples 5.1, 5.2 and 3.3, you should recognize that if
the denominator tends to 0 and the numerator does not, then the limit in question does not
exist. In this event, we can determine whether the linit tends oo or —0o by carcfully
cxamining the signs of the various factors. L

Evaluate lim —‘i‘——
-2 {x - 3)x+2)
Sefution  First, notice from the graph of the function shnwn in Flguu, 1.35 that there
appears to be & vertical asymptole at v = —2.
Further, the function appears o tend tooo as v — -2F, and to oo as x — —27,
You can verify this behavior, by observing that

lin x+1 - g PR

M Ny e 3)(1 —| 2y © o0 few T G = ]

d 1 1} y+1 Uiy ds ‘; Podlie ot}
an ey = 00, :

(I 3)(1 ‘* 2) Sedge ] LR *
So, we can see that ¥ = —2 is indeed a verticul asymptote and that
v | L
lim ————— does not exist,

x——2 (x — ’5)(1 + 2) ) o

EXAMPLE 5.5 A L|m|t Involvmg a Trlgonometi ic Functlon ‘
'('-—)ﬁ

to be a verlical asymptote at x
You can verify this behavior by observing that

+
. Sy b \ .
lim tany = hm =00
;——)— _r—)—%f—COS Ry -
: +
o+
. . sy RS PRt | ¢
and fim tany = lim = 00, |
x—»%*’ x> It COSY By

T
So, we can see that ¥ = -2- is indeed a \erlu,ai asymplote fmd that

hm tan x docs not exist.

— % . C B

O Limits at Infinity

We are also interested in examining the limiting behavior of functions as v increases
without bound (written x — ©0) or as v decreases without bound (written x — —o0).
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¥ . o I. . o .
4 . o Retwming to f{x) = —, we can see that as.x ~» 00, — —» 0. In view of this, we write
104 : X ) . CX ‘ i
‘ lim — =10,
4 J®) X300 X .
' i
S S - .1
bt —F==t—»x  Similarly, : : lim —~ =0,

¥ . 3 X2 ¥
[
Jx} 4

Nolice that in Figure 1.37, the graph appears to approach-the horizontal: linc y=0,as

x — co and as x — —oo. [l this case, we call y = 0 a horizontal asymptote,
—H % . ’ .

T S AT LT A [ P —

EXAMPLE 5.6 Finding Horizontal Asymptotes

FIIGURE 1.37

o P : . ' o !
lim -~ =0and lim — =0 Look for any horizontal asymptotes of f(x) =2 — —.-
Iorea X e I : . - X
. _ 1
: Golution  We show a graphi of y = f(x) in Figure 1.38. Since as x — 00, —‘- -+ 0,
f} we get that : o '
+ 8
i (]
T i lim [2--—-)=2
{_Lf 6 . ) X200 ) X .
. B ) : ) i .
S T4 . and Iim (2—-—]=2"
1 1 i x—r—00 X :
el N . ' .
— T F}(_);f Thus, the line y = 2 is a horizomtal asymptote, & ..
4 o X . . .
T / R * . As you can see in Thearem 5.1, the behavior of —, for any positive rational power 1,
—27 as x — +o0, is largely the same as we observed for f(x) -
: SX
F'GURE l '38 ! ,m‘.:‘-nmw-wu.‘:,..,ﬂm ,m,,u ey ,,A,A,._‘ P e e i £, ., At a2 e ,.,...._‘“?.\_-,.-,.u_.
1 : FTHEOGREM 5.1 : : S
lim (2 - f) = 2 and . .
e X | For auy rational number ¢ > 0,
. 5 by _ | .
.:13Tm (2 ,\-) - 2 - . lim, — =0,

x—rdoc xt

where for the case where x — —oo, we assume that 1 = ~ where ¢ is odd,
Iy o :

304 S LA A proofl of Theorem 5.1 is given in Appendix A. Be sure that the folloWing argument

N l
R . makes sense to you: for f = 0, as ¥ — oo, we also have x’ - o¢, so that — — 0.
All of the usual rules for limits : xf

stated in Theorem 3.t alsohold © . [n Theorem 5.2, we see that the behavior of a polynomial at infinity is casy to determine.
for limits as v — =00, :

THEGREM 5.2 .
For a polynomial of degree n > 0, pu(x) = a,x" + tpo1 X4 o+ ag, we have

fim pylr) = o0, ifa; >0
o P T Lool ifa, <0




114 CHAPTER | ++ Limitsand Contiﬁuity : o ’ ’ : _ 1-42 .

PROOF
We have lim p,(x) = JHEL(HHI” 4@ " e oag)
. 17} a
= lim |x a,¢+-i~1~ °~+~jg
EY-5) xn .
— oo, .
; . ' L apy .
if @; > 0, since ~ lim (a,, bl e + 0) =an
v ‘

and lim x" = o0, The result is p:oved similarly for a,, < 0 [ £
500

Observe that you can makc similar stalements ugdrdm;,lhe value of Hm 'p},(.r), but
. - . R Rt
be careful: the answer will change depending on whether " is even or odd. {We leave this

as an exercise,)
In example 5.7, we again see the need for cawtion when applying our basic rules fo:

Y .
I\ limits (Theorem 3.1), which also apply to limits as v — cooras x — —00.
1q EXAMPLE &7 A Limlt of a Quotlent That ts Not the Quottent
of the Limits : _
e ) Sy — 7
‘ ' Evaluate lim .
—10 roody 43
T Sokation  You might be lempled to write
—4 & Sy -7 l_izn Bx —7) s
lim = 1% S
3 x—oody -3 lim (4x + 3)
I 00
o0
FIGURE 1.39 = — = 1. Vet e (5.3)
Sx=7 5 & :
lim PRl The graph in Figure 1.39 and some function values (see the accompanying table)
oAt suggest that the conjectured value of 1 is incorrect. Recall that the limit of a quotient is
. * the quoticnt of the limits onty when borh limits exist (and the limit in the denominator is
i8x “'7 A5 nonzero), Since both the limit in the denominator and that i m 1he numerator tend 10 ©0,
R I L S the limits do not exist. : :
10 1 .Further, when a limit looks like -z—, the actual value of 1he limit can be anything at
100 1.223325 all. For this reason, we call £ an indeterminate form, meaning that the value of the
1000 1247315 expression cannot be determined solely by nolicing that both numerator and
10.000 1249731 denominator tend to cc.
; Rule of Thumb: When faced with the mdetermunle form = in c,alcul'mng the
100,000 1.249973 :
limit of a rational function, divide numerator and denpminator by the highest power of x

appearing in the denominator.
Here, we have

S5x — 7 i Sx =7 (lf,\’) . Muitiy miswee: i

= = lim | —— - :

s—oo | dx + 3 (1/x) i

= lim w T Mabaply s
A3

lim (5 — 7/x)
— r—=o0

lim {4 +3/x)

X—00

5
= - = 1.25,
4

" which is consistent with what we observed both graphically and numerically earlier, e
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In example 5.8, we apply our rule of thumb o a commeon limit problem,

{XAMPLE 5.0 Finding Slant Asymptotes -
3

Evﬂuatc ]im o and find any stant 'lsymptou,x

w0 —0x2 - ‘
Solugion  As usual, we first examine a graph (xec Figure 1 40a) Note that here, the
graph appears (o lend 1o —oo as x — oo, Further, observe that outside of the interval
[—2, 2], the graph looks very much like a straight line. I we look at the graph ina

somewhat larger window, this linearity is even morc apparent (see Figure 1.40b).

19 . . )l

" ) 4
!67 - - 20
_ i ' -
\;). \“ i
WA ~
: g
—— bt } f - J b X
-6 - 6 —20 T 20
I -
: \\\‘ ] S
Jf e
+-6

FIGURE |.40a

420

" FIGURE 1.40b

A S . 453 45
O YT e o
Using our rule of thumb, ‘\\_fe have : :
s T s Q)T e
im ———— = lim 5 . 5 i
¥ 00 ()\ — Tx v=oof —06x° ~Tx  (1/x7) Cuilen
4y +5/x%
= lim Multid rneagh
Yoo —-6 1/x
= —OO,

since as x —> ©0, the numerator teands to co and the denominator tcnds to —6.,
To further explain the behawor seen in Figure 1.40b, we pcl form a long (!1\'191011
We have

445 27 5449/9%
P N —6x2 — Tx’ _

Since (he third term in this expansion tends to 0 as X 00, lhe function vatues
approach those of the lmeal function _

27

“3rtg
as x — oo, For this reason, we say that the Function has a slant'(or 'ohlique]'
asymptote, That is, instead of-approaching a vertical or horizontal line, as happens with
vertical or horizontal asymptoles, the gmph is approaching the slanted straight lmc

2 7
¥ = —5.\ + 3 (This is the behavior we're seeing in Figure 1.40b.) "

Limits involving exponential functions are very himportant in many applications,
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10
5“
o Y e
-1 -5 5 10
._.5__ ’
FIGURE |.41a
y= alls
v
h
301
204
1+
_|____.‘|..-R;¢""(’ } .'—+—>.\‘
] -2 2 4
FIGURE 1.41b"
Cy=¢€'
¥
A
1/ .
1 t t +—+x
— 2 4
Py

FIGURE 1.42a

y=tan"yx

¥
4

Nl A e

IR

FIGURE 1.42b

¥y =tany

- ¥

~ approaches O from the left and tend to infinity as x upprmches 0 i"roin the right. To

" BEvaluate lim tan—'x
A0

S R

i XMPL

5.9 Two L|m|ts o{ an Exponential Functlon

Evaluate I1m e"* and ilm e”

Pt - ’ -
Solution A compuler—genemtcd graph is shown in FigurL [ 4la Although it is an
unusual looking graph, it appears that the function values are approaching 0, as ¥

a—0

of y=¢e%) Combmmg tha,se results, we gel

1 .
verify this, recall that l:m i —co0 and lnn e* = 0: (Sce Figure 1 A1b fora gldph

lim ¢* = 0.

=0

Similarly, lim — = oo and lim e* = oo. {Again, see'Figure 1.41b.) In this case,
x-0r X X—0o . . ) )

we have o

lim e = oo,

S xea{t B s e e e o e e e o]

Aswe seeinexample 5.10, inverse trigonometric functions mfly h‘we horizontal ¢ asymp-
totes. ‘ -

H Two lelts of an Inverse Trigonometrlc Functlon

)fi.fl\M?‘LZ 5.

and lim tan™
=00,

Solution  The graphof y = tan™! x (shown in Figure 1.424) suggests a horizontal

asymptote of about y = —1.5 as x —» --co and about y = 1.5 a8 x -> 00, We can be

more precise with this, as follows. For lim tan™! x, we are laoking for the angle that 6 -
: oo

i JT L . o
must approach, with 5 < 0 < 5 such that tan @ {ends Lo o0, Referriug to the graph

w
of y = tanx in Figure 1.42b, we see that tan x tends 1o oo as v approaches 3

o+
Likewise, tan x tends to —co as x 1pp10'1chcs 5 , so that
P o T
lim tan” " x = — and lim tan™ x = ——.
=00 2 ¥——00 2 .

n example 5.11, we consider a model of he size of an animal’s pupils. Recall that in
bright light, pupils shrink (o reduce the amount of light entering the eye, while in dim light,
pupils dilate to allow in more light. (See the chapter introduction.)

- Flﬂ-dlﬂg the Sizmt;‘c‘)?al;anmals PUPIIS T

B AMEL

Suppose that the diameter of an animal’s pupils is given by f(x) mm, where x isthe
160\ 04+ 90

TNETE

2511

intensity of light on the pupils, If f ()= , find the diameter of the pupils

with {a) minimum light and (b) maximum l1giu.

Solution For part (a), notice that F(0) is undefined, since 0% indicates a division, by
0. We therefore consider the limit of £ x) as x approaches 0, bul we t.omputu a




f-45
¥
F 3
20
154
‘\...‘__
10+ [T
5._
t } } i —» X
2 4 6 8 10
FIGURE 1.43a
y= f{x)
¥
3
40

201

3ow\

.02 0.04 0.06 0.08 0.1
FIGURE 1.43b
¥+ 1)

' elmumte the negalive exponents). We then have

two identical exponential terms: e~V Also notice that lim e‘z‘“’ﬁ_ =0,
: oo

where the negative sign indicates a downward divection. So, with &k =.0.00016, the

fimiting velocity is — /532 —179 ft/s (about 122 mph)

SECTION 1.5 -+ .Limits Involving Infinity; Asymptotes. . |17

one-sided limit since x cannot be negative. A computer-generated graph of y = f(x) '
with 0 < x < 10 is shown in Figure 1.43a. Tt appears that the y-values approach 20 as x
approaches 0. To compute the limit, we multiply nuinerator and denominator by x‘” (to

lim 1603704490 L 160.1' "_.0'.4 +90 x%4
x4y 04 +4- 15 - .r-ﬂ()' Gy—04 4- 15 x G4

' 160 + 90x04 . 160

= lim ——r——— = —— = 40 mm.
eov A 15v04
This limit does not seem to match our g.raph bud notice that Figure 1.43a shows a gap
near x = 0. In Figure 1.43b, we have zoomed in sothatd < x < 0.1. Here, a limit of 40
looks more reasonable.
For part (b), we consider the limit as x tends to co. From Figure 1.43a, it

appears that the graph has a horizontal asymptole at a value close 1o y = 10, We
compute the limit

i C160x7% 00 90 p
m ———— = — = 0 mn.
oo 404 4 15 15 .

So, the pupils have a limiting size of 6 mm, as the intensity of light tends to oo, &

In our final example, we consider the velocity of a falling object.

5. i ) Fmdmg the leltmg Velocny of a Falhng Ob;ect
The velocity in /s of a fallmg object is modclcd by

21— e“z"mu

U([) = — _k.. 1 +(?_21\/j?. V,

where k is a constant that depends upon the size ¢ and shape of the object and the density of
the air. Find the limiting velocity of the object, that is, find hm v(¢) and compare limiting

velocities for skydivers with & = 0.00016 (head first) and A = 0, 001 {spread cagle).

folution  Observe that the only phce thalr appéass in the expression for v(f) is in the

since hm e' = (). We then have
— 00O

32 (1 e~
tlﬂl}o v(?) thQ: B _A_ | -+ e—2v32E

Il

3 =21y .' . . .
33 (1 jime™ 32 /10 32 »
— —_ e — =y 1 - = —,{ — s,
kb4 ime 232 ) ¥ £ NL+0/ Yk
Coreow :

limiting velocity is -, /Td?mz—m a2 -447 Us (abomsoo.mph'i), and with k = 0.001, the

o601
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) WRITING EXERCISES

1. 1t may seem odd that we use co in describing limits but do not

count oo as a real number. Discuss the existence of co: isit a

nwmnber or a concept?

2. In example 5.7, we dealt with the “indeterminate form” 2
Thinking of a limit of 0o as meaning “getting very large” and
a limit of Q@ as meaning “'getting very close te 0,” explain why

the following are indeterminate forms: 22, g, o0 — 0o, and
oo + . Determine what the following non-indeterminate forms

represent: 00 + 00, —o0 — 09, 0o -+ 0 and 0/co.

=

On you‘rcomputer or calculator, graph y = 1/(x - 2) and look
for the horizontal asymptote y = 0 and the vertical asymptote

x = 2. Most computers will draw a vertical line at x = 2 and -

will show the graph completely flattening out at y = O forlarge
x’s. [s this accurate T misleading? Most computers will compute
the locations of points for adjacent x’s and try to connect the
points with a line segment. Why might this result in a vertical
line at the location of a vertical asymptote?

4, Many students learn thit asymptotes are lines that the graph
gets closer and closer (o without ever reaching, This is true for

many asymptotes, but not all. Explain why vertical asymptotes

are never reached or crossed. Explain why horizontal or slant
asymptotes may, in fact, be crossed any number of times; draw
one exarmple.

In exercises 1-4, determine each limit (answer as appropriate,
with a number, o¢ , — 00 01 docs not exist)..

i 12
L@ lmo— ® e

© M e

(b} lim

x——1t

2.(a) & Jolitid
{a) . im T

{e} lim —

L x4 —4
3. (a) _tlim (b 1“ T, 12 4r T4

{c) lim

. : I—x
o lim ——— im0
e ImooT 1)2 ® 2y

© ‘linj] (x4 12

C1-46

1a exercises 5- 24 dctel mine each Hmit (answer as .lppwplnte,

with a number, 0o, —

5

7.

9

11,

13,

15.
17,
19.

21, lim

Jim -

2 (Jd — y2
fim ————
- .,‘4 + x?2
o

X
lim —————
e 3y Ldy — l
hm In2xv .
[N Ju vl
lim e

=)~

lim cot™'x

g

lim &'
=00

lim sin2x

X0

In(2 +e")

e Ty

23

~lanx

lim' e
f-af2

00 or does not enal)

6, lim: (x?—2x— 3)72/-3
x——1"
. -y ¥l
8 lim ——————
RS e oy
2xt 1
10, Iiml e AL

12, lwi In2v
N S

14, lim &=
., I— O

1

16. lim see”™ x|
X .

18, lime'

—G

20. lim (e cos2y)
Eirda s . .

22, lim sin(tan~'x)
Ty, .

24, lim tan"t

{0

{in.x)

In exercises 25-34, determine atl horizontal and vertical

asymploles. For each vertical asymplote, determine whether
Flxy — 02 or f{x) — —oo on cither side of the asympiote.

X
26. e
S = T
: 2
R ¥
WID=wii
3. fo = Iy -+ 2)

In(x? +3x +3)
M. fly=3et

’HJ In exercises 35-38, determine all vcrticai and slant asymptotes,

X
25, flx)=
IO= T
710 =0
. 3241
29.' X r)= ————
Y x1-2x-3
M. F{x)=In(l —cosx)
33 fx)=dan'x — 1
¥
Bor=i—a
R
YTy

2
+1

36, y =
_ Y x—2
38 y— 5
IR

h‘:a In exercises 3948, use graphical dml numericai ev;dence to con-
jecture a value for the indicated limit.

3%

41,

43,

2
X
fim —
=00 24

—dx +7

lim —~+~———-—2
oo 2\ f-xcosx
x4 +5
lim ————
5o es?

‘ 97
40. lim —
oo )

) 2..3 ‘,2 b1

42 g oA

—-w y— vsiny

dd, Tim (e — 1Y) -

T o0
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45

47.

x —cos(my) et =1
jim —— 46, lim —
k-l X+ | =0 X
_ ' .. Inx?
iim ——— 48, lim
a0t cosx — 1 =0 X

) In exercises 4952, use graphical and numerical evidence to con-

jecture the vatue of the limit. Then, verify your conjectuve by
finding the limit exactly.

49

56

51

52

53

54,

55

56.

5.

58.

59

9.

61.

lim (V4x? — 2x + | — 2%) (Hint: Multiply and divide by the

P eI

conjugate expressiom: Vdx? — 2x + | + 2Zx and simplity.)
lim;('\f %2 43 — x) (See the hint for exercise 49.)

llm(\/51 +-dy +77\/5l +x -

R du )
()]
1+-] .
Ty X

+3) (See the hint for

exercise 49.)
e = lim

"
(t + —) [Him
X

Skeich the graph of f{v) = ¢~ " cosx, Identify the horizontal
asymptole. [s this asymptote approached in both directions (as
x — coandx — —oo)? How many times does the graph cross
the horizontal asymptote?

lim
K= -0

Expliin why it is reasonable that m f{x) = ]im+ f(l/x)and
I =0

lim f(x)= lim f{l/x).
T ="
In the exercises of section 1.2, we found that lim (1434 =
lnn {1 + x)}¥7, (It.turns out that both ]mms equa] the irra-
t:oml number ¢.) Use this result and exercise 54 to argue that
Hm {1 4+ 1/x)" = lim {1+ 1/x).

Yoy . R Rale™]

One of the reasons for saying that infinite limits do not exist is
that we would otherwise invalidate Theorem 3.1 in section 1.3,
Find exaniples of functions with infinite limits such thut parts
(i) and {(iv) of Theorem 3.1 do not hold.

Suppose that the length of 2 small animal ¢ days after bir[h
is (s —_—
0= 1 +9(0.8)

birth? What is the eventual length of the animal (i.e., the fength
as it — oo)?

mm. What is the length of the animal at

Suppose that the length of a small animal ¢ days after birth

ish(f) = mm. What is the length of the animal at

2 4- 3(0.4)
birth? What is the everual length of the animal (i.e., the length
as i — oo)!
Suppose that the size of the pupil of a certain animal is given
by f{x){mm), where x is the intensity of the light on the pupd
If ) = 80x~%* + 60
Xy ————

ST 20 s
and the size of the pupal with an mimlte amount of tight.
80x=%2 1+ 60

B 03415
Modify the functions in exercises 59 and 60 to find a function
£ such that lim+ flxy=8and lim f(x)=2

) [ 4o Jul)

, find the sma of the pupil with no light

Repeat exercise 59 \\’lﬂl fix)y =

SECTION 15 v+
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62. After an injection, the concéntralion of a drug in a muscle

04

65

60,

07

69

6.

4

. 08,

varies according to a function of time f(1). Suppose that f is
measared in hours and f(r) = "% — ¢4 Find the limit
of f{eybothas s — Qand 7 — oo, and interpret bosh Litnits in
terms of the concentration of the drug. :

Suppose an object with initial velocity.vg = .0 ft/s and {con-
stant) mass #r slugs is accelerated by a constant force F
pounds for ¢ seconds. According to Newten’s laws of mo-
tion, the object’s speed will be vy = Fifm. According to
Einstein’s theory of relativity, the object’s speed will be
vp = Fetf/m2c? + F212, where ¢ is the speed of light. Com-
pute lim vy and Hm vg, )
IER 2=WY =00

-According to Finstein’s theory of relativity, the mass of an

object traveling at speed v, is given by m =/~ v2fe?,
wherz ¢ is the speed of light {about 9.8 x 10® fi/s). Compute
Ima m and explain why mg is called the “rest mass.” Compute

lisn s and discuss the lmphcmmm (What would happen if

r—=eT

you were traveling in a-spaceship approaching the speed of
light?) How much does the mass of o 192-poutd man (mg = 6)
increase at the speed of 9000 tt/s (about 4 times the spu,d of
sound)?

Inexample 5.1 2 the velocity of askydivert seconds after jump-
—21 V32

o ' /ﬁ t—

ing is given by tl_{l) =V7 i—“ TR
velocity with & = (.00064 and & = 0.00128. By what factor
does i skydiverhave to change the value of & to cut the limiting
velocity in halt? - o

Find the limiting

Graph the velovity function in exercise 65 with & = 0.00016
{representing a headfirst dive} and estinate how Jong it takes
for the diver to reuch u speed equal to 90% of the limiting
velovity, Repeut with & = 0 G0i (rtplt.bt,ntln_g a spread -eagle
position). . -

Ignoring air resistance, the maximum height reached by a

. 2
;- . . ui R

rocket launched with initial velocity v isfh = —r—2—

19 6R — v}

S!

“where R is the radius of the earth. In this exercise, we mterprél

this as a function of vg, Explain why the domain of this function
must be restricted to vy = 0. There is an additional restriction,
Find the (positive) value v, such that A is undefined. Sketch a
possible graph of i with 0 < vy < v, and discuss the signif-
icance of the verical asymprote at_v,. (Explain what would
happen 1w the rocket if it is faunched with initial ve!ucuy v..)
Expliuin why v, is ¢alled the escape velocuy

p()

Suppuose that § (\)19 aumoml function” f(x) = priey with the
degree (largest c\punent) of p(l) less:than the degree of (v ).
Determine the horizontal- asymptole nt ¥ = fx)

Supposc th'at j(\) is # rational Tuaction f(\) =
q

the degree of [)(1) greater timn l:ht: degree of q('.) Determlne
whether y = f(x} has a horizontal asymplote.
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70,

71

72

73.

74

®
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Suppose that f{x} is a rational function f{x}= % i
= f(x}has a horizontal asymptote y = 2, how does the de-

gree of p{x) compare to the degree of g{x)?

Suppose that f(x) is a rational funciion f(x)= pz‘;
X

= f{x) has a slant asymptote y = x + 2, how does the de-
gree of p(x) compare to the degree of ¢{x)?

-
has

Find a quadratic function ¢(x) such that f{x) = 00

one horizontal asymptote y = 2 and two vertical asymptotes

X =x3 - -

X

—_— haa
q(x)

and exactly one vertical

Find a quadratic Iunctum q(\) such that f(x) =

one horizoatal ‘1sympmtc y= m%
asymptote x = 3.

[
Finda iuncuon g(\} blltll that f(\) =
3(\)

tal asymptotes y = =1 and no vertical asymptotes,

In exercises 75-80, label the statement as true or {alse (nof al-
wiys true) for real numbers a and b,

75,

76

77

78

7%

80,

If hm fx)=«and ]1m 2(x) = b, thea
11m[j(\)+g(\)] = (r + b.
f(x) _a
It hm f(\) =g and llm g{x) = b, then lsm e .
glx) b

if Ilm f(r)
hm {f(t)“g(l)I =

oo and hm g{x) = 00, then

If lim f{x) = coand lim g(x) = oo, then
Eadad : Y]

“lin;} [fx) 4+ glx)] = 0

If lim f(x)=ua ﬂﬁd lim g{x} = oo, then kim [m] =
Jim i, N

H lim f(x)_

P gan]

coand Bm g{x}=co, then lim [i—(—‘—z =1.
X-e00 =t og(x)

In exercises 81 and §2, defermine ali vemcai and horizontal

asymplotes. .
4y
. ity <0
x4
o2 , -
81, f(x)= - if0<x <4
X2 : :
¢ ity =4
¥4 1
x 43 "
%41 lt.\'<0
82, f(x)=dJe" +1 it <x <2
i
Xt -
R TR ifx =2
EN T

d 3.

Explain wh hm(e“" sinf}=0 for any positive constant a.
p ¥ y P

Although’ thls is theoretlca[ly true, it is not necessarily use-
ful in practice. The function e~ sins is a simple model for a

Ll iyt

has two horizon-

84.

- (b)) State and prove

I-48

Spring-mass systeﬁl. such as the siispension syslerﬁ ot i car,
Suppose is measured in seconds and the car passengers cannot
‘feel any vibrations Iess than (.01 {inches). If suspension system
A has the vibration function ' sint and suspension system
‘B has the vibration function’ e="* sins, determine graphically
how long it will take before the vibrations damp out, that is,
| £ < 0.01. Is the result ii}l;({"‘“ sinf) = 0 much consela-
tion to the owner of car B? ’ '
{a) State and prove a resull analogous to Theorem 5.2 for
N El_nm Palx), for a odd,

a result ﬁnalugous to Theorem 5.2 for
hm Palx), for i even.

85, Itis very difficult to hnd simple sm[emcms in C’llCll]l]S thiaf are

86.

abways true; this is ong reason that a carefyl development of

the theory is so important. You may have heard the simple rute:

to find the vertical usymptoics of flx)= S%—; simply set the
v

denominator equal lo 0 |ie., sobvei(x} = 0]. Give an example
where fi{w) = 0 but there is nor a vertical asymptoté al ¥ = «.
In exercise 85, you needed to find an example indicating that
the following statement is not {necessarily} true: if h{a) =0

e _“ N ) . ey - .
then f(x) = ;’E ; has & \'cmcnl_asymptote atx = a. Fhis is
1(x :
L (x)
not true, but perhaps llb converse is true: if f{x) _%—) has

a vertical asymptote atx =.a, then (i) = 0. Is this statement
trucf? What 1t gand h are polynomials?

g]—a In exercises 87-90, use numerical evidence to conjedme a

decimal representation for. the limit, Cheek your answer with
your computer algeln a system (( AS); if your answers d:s‘!gleq,
ulmh one is correct? '

87,

89,

lim x '/ 88, “lim (n2)*

1 =+07 x—l

Hm o V* 90. lim —
3

Corod : T =m0 Yt

@

B

EXPLORATORY EXERCISES

Suppose you are shooting a basketball from a (horizontal) dis-
tance of L feet, releasing the ball from a im.ition h feet below -
the basket. To get a pertect swishi, it is necessary that the ini-
tial velomly ¥ and m:ml rch.asc angle fy sutisfy tin equatlon

L})
f%l '
.cﬁ%/ i

.

L...._',}\—

vp = gL/ 2 cos? Oy(tan 6, — A /L), For'a free throw, take

=15 ='2 and g = 32 and graph v as a function of &;.
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What is the significance of the two vertical asymptotes? Ex-
plain.in physicat terms what type of shot corresponds o each
vertical asymptote. Estimate the minimmm value of vy (call it
Umin ) Explain why it is easier to shoot a ball with a small ini-
tial velocity. There is another advantage to this initiaf velocity.
Assume that the basket is 2 ft in diameter and the ball is |
t in diameter. For a free throw, L = 15 ft is perfect. What is
the maximum horizontal distance the ball could teavel and still
go in the basket (without bouncing off the backboard)? What
is the minimum horizontal distance? Call these numbers Ly
and Ly, Find the angle 0y corresponding 10 vpin and Ly, and
the angle ) corresponding t0 Vg and Lp,,. The difterence
|2 — 8} is the angular margin of error. Brancazio has shown
that the angular margin of error for Vmin 18 Larger than for any

SECTION 1.6 ¢ Formal Definition of the Limit 121

‘_' 2. In applications, it is common to compute llm F{x) o de-

termine the “hldbll!l}'" of thu, functicn j(\) Cmmder the
function f(x)=xe™". As x — o0, the first factor in f(x)
goes 1o 60, but the secand factor goes to 0. What does the
product do when one term is getting smaller and the other
term is getting larger? It dependds on which one is chang-

-ing faster. What we want to know is which term “domi-

nates.” Use graphical and numerical evidence to conjecture
tire value of lim (w*‘-) Which tarm domim:es" I the limit

limm (x e‘") \\hth term dommatex’ Also, try 11m (\ e )
N-rdQ

Rased on your investigation; is it always true thut uponenmls
dominate polynomials? Are you positive? Try to determine

other initial vclocny

which type of tunctmn polynomials. or ]uunlhms, domi-
nates. :

S ¢ A

AT Y T

(@) .6 FORMAL DEFINITION OF THE LIMIT

H!S r@rmm HC}’TEE@ '

Augustm Louis Cauchy
{ I789—t857) AFrench,’
mathematician who developed
the s—ﬁ der nitions of limit and

continuity, Cauchy, was one o!th'e:'

_raost prolific mathemauaans in-
‘history, maklng important
contributions to nirnber theory, -
;Imear algebra, da[rerenua!
equations, astronomy, aptics and
comp!ex varlables. A difficult man
to get along with, a cofleague
wrote, “Cauchy is mad and there
is nothing that can be done about

hie, although right now, he is the

anly one who kaows how
mame;patics.shouid be done.”

We have now spent many pages discussing various aspects of the computation of limits.
‘Fhis may seem a bit odd, when you realize that we have never actually defined whilt a limit
is. Oh, sure, we have given you an ider of what a limit is, but that’s about all. Once '\gftm

we have said that

fim j(\) =L,
A—d
if f{x) gets closer and closerto L as x gets closer and LlOSCl toa.

So far, we have been quile happy with this somewhat vague, although intuitive, de-
scription. In this section, however, we will make this more precise, and you will begin to
see how mathematical analysis (that branch of mathematics. of Which the calculus is the
most elementary study) works. :

Studying more advanced mathematics without an understanding of lhe precise def -
nition of limit is somewhat akin to studying brain surgéry without bothering with all that
background work in chemistry and biology. In medicine, it has only been through a carelul
examination of the microscopic world that a deeper understanding of our own macroscopic
world hos developed, and good surgeons need to understand what they are doing and why
they ave doing it. Likewise, in mathematical analysis, it is through an understanding of the

. microscopic behavior of functions (such as the precise defmmon of limit) that & deeper

understanding of the mathematics will come about,
We begin with the carelul cxamlmuon of an clt,memary example. You should certainly

- bchc_vc that

limo(lr +4) :_ 10.

Suppose that you were asked to explain the meaning. of this particular limit to a fellow
student. You would plobably repeat the intuitive explanation we have nsed so far: that as
x gets closer and closer to 2, (3x + 4) gets arbitrarily close to 0. Bul, exactly what do
we mean by close? One answer is that il lm;(&\ + 4) = 10, we should be able to make

R d
(3x +4) as close as we like to 10, julst by muking v sufficiently close to 2. Bul can we
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What is the significance of the two vertical asymptotes? Ex-
plainin physical terms what type of shot corresponds o each
vertical asymptote. Estimate.the minimum value of vp (call it
Vayn). Explain why it is easier to shoot a ball with a small ini-
tial velocity. There is another advantage to this initial velocity.
Assume that the basket is 2 ft in diameter and the ball is |
ft in dinmeter. For u free throw, L = 15 ft is perfect. What is
the maximum horizontal distance the balt could travel and still
go in the basket (without bouncing off the backboard}? What
is the minimum honzom'd dlsl'muc9 Call these numbers L.
and L. Find the rmglr, & corn,spondmg 1O Unyin and Lpyip and
the angle ¢» corresponding t0 vy and L., The difference
i@ — | is the angular margin of error, -Brancazio has shown

that-the angular margin of error for Vs 15 larger than for any

SECTION 1.6+ Formal Definion of the Limit  F2}

2. In 'tpp]lu&tlonx it is common to compute ilm Slxy to de-

termine the “mbllnl) of the functicn j(\) Cons;der the
funetion f(x) = ve™". As-x — 0, the first factor in f(x)
goes 1o 20, but the. scwnd factor goes to (L What does the
product do when one. ferm is getting smaller and the other
term is: getting - ]an,u'" 1t depens on which’one is chang-
ing faster. What we wini (o know is which term “domi-
nates.” Use griphical wid numerical evidence to Lonjeclu_ré
the vatue of lim (\'e*‘)' Which term dominates? In the limit

hm{ﬁs-”) whuh term dominates? Also, 1ry [:m(\ e ).

B‘lsed on your investigation, is it lsiways true that e'cponen:m]s
dominate polynomials? Are you positive? Try to determine

other initiat velocity,

which type of - tumllun polynomn!s or logarithms, doml-
nates. :

5H!ST{’)RFF‘AL NGTES-]

Augustm Louls Cauchy :
(1789~1857) -AFrench; -
mathgmatician who developed
the £-§ definitions of fimit and
continuity, Catchy was one of r.he
most prolific mathematicians i in
history, making important

'con_t_nbutlons to number theory,. .

Jingar algebra, diiferéntial g

~equations, 3stronomy, optics and
:compiex vanables A difficult man '

“to gt along wath a colleague -

: wrote' "Cauchy is mad and there

-5 nothing that can be done about
'hlm,ra'lthough right novy, he is the
cnly one who knows how
mathematics shoutd be done.”

ERR
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@) .6 FORMAL DEFINITION OF THE LIMIT

We have now spent many pages discussing various aspects of the computation of limits.
This may scem a bit odd, when you realize that we have never actually defiried what a timit
is. Oh, sure, we have given you an fdea of wh'ﬂ a limit js, but that's about all. Oncc again,
we have said that :

llm fx)y=1L,

X—ra

Aif f(x) gets closer and closer to L as x gets closer and closer to a.

So far, we have been quite happy with this somewhat vague, although intwitive, de-
scription. Tn this section, however, we will-make this more precise, and you will begin to
see how mathematical analysis (that branch of nmihcmatlcs of which the calculus’is the
most elementary study) works.

Studying more advanced mathematics w;thoul an undetatandmg of the precise defi-
nition of limit is someivhat akin to studying brain surgery without bothering with atl that
background work in chemisiry and biotogy. In medicine, it has only been through a careful
examination of the microscopic world that a deeper understanding of our own macroscopic
world has developed, and good surgeons need to understand what they are doing and why
they are doing it. Likewise, in mathematical analysis, it is through an understanding of the
microscopic behavior of functions (such as the: precise definition of limit} that a deeper
understanding of the mathematics will come about. :

We begin with the careful examination of an élementary exampie. You Qhould Lerlamly
believe that

lim(3x +4) =
-2

Suppose that you were asked (o explain the mcaning of this particular limil to a fellow

student. You would probably repeat the intuitive explanation we have used so far: that as
x gets closer and closer to 2, (3x -+ 4) gets arbitrarily close to 10. But, exactly what do
we mean by close? One answer is thal il lnn(’h + 4) = 10, we should be able to make

(3x -+ 4) as close as we like to 11}, ]ust by md!xmg x sufficiently close fo 2. But can we
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p=dx s 4 s

FIGURE 1.44

| 1
2 — = < x'< 24 - guarantecs
that {(3x +4) —

10] < 1

. ) . e .
Find the values of x for which (3x + 4) is within distance TG of 10.

100 100
r ] 3r—6 !
. s
© 100 T
Dividing by 3 yield : 2o L
LI
ividing by 3 yields 305 < < 0"
hich is equivalent t | 2| ! ‘ -
winicn t wvalent o X — < em—
’ 4 ’ . 300 S U S

actually do this? For instance, can we force (3x + 4){o be within distance 1 of107 To see
what values of x will guarantee this, we wrile an mt.qudhly that says that (3x + 4} is within
t unit of 10:

IGx +4)— 10] < 1.

Eliminating the absolute values, we see that this is equivalent to

e Bx 4 —10<1

or _ 1<l -6<1,

‘Smce we need to determine how close x must be (o 2, we want to isolate x — 2, instead of
x. So, dividing by 3, we get :

]
3<.\ <3
, . - B
or L |x-—2|<§.— o . : N (6.‘1)

‘Reversing the steps that lead toulcqu‘lllly (0.1}, we sec that if.x xswlthm (llSldflLC of 2, thcn

(3x + 4) will be within the specified distance (1) of 10.{Sce Figure .44 fora gnphlcal inter-
pretation of this.) Se, does this convince you that you can make (3x + 4) as close s you want

* 1o 107 Probably not, but if you used a smaller distance, perhaps you'd be more convinced.

SWAMPLE 6.1 Exploringa Sini;i'léul:i'ﬁ%nt

Holution  We want -
3x 49— 10 _—,
| (B -t 4) — 10 < 7o
Eliminating the absolute values, we get

[ 1
—op SGTED 10 <

So, based on example 6.1, are you now convinced that we can make (3x + 4) as close
as desired to 107 All we’ve been able to show is thal we can make (3x + 4) pretly close (o
10. So, how close do we need to be able to make it? The answer is arbifrarily close, as close
as anyone would ever demand. We can show that this is possible by repeating the arguments
in example 6.1, this time for an unspecified distance, call it &.(epsilon, where g > 0).




y=3x+4 s

EHXAMPLE 6.7 Vertfylng a L;m!t

FIGURE 1.45 _
The range of x-values that keep
|Bx+4)— 10} < ¢
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B o M ——— -

Show that we can make (3x + 4) within any specified distancc £ of 10 {no matter .héw
small € is), just by making x sufficiently close 102,

Solution The ObjC(.ll\'ﬂ is 10 determine the range of ¥ \'alues that- wnll guarantee that
(3x -+ 4) stays within & of 10 (see Figure 1.45 for-a sketch of this range), We have

i(3x +4)— lO] < £ .

This is equivalent to —g < (3x + 4= 10 < &
or —E<3,\‘—6l<8. )
o | £ e
Dividing by 3, we gel T3 <y -2« 3
- | -2l <&

o x—2] < 5

Notice that cach of the preceding steps is reversible, so that [x — 2| < 3 also implies

that |(3x + 4) — 10| < e. This says that as long as x is within distance % of 2, (3x + 4)
will be within the required distance & of 10, That is,

[(3x + 4} —10] < £ whenever |x — 2| < %
’ . 3 EL L

Take a moment or two to rccognve what we've done in example 6.2, By using an

unspecified distance, &, we have verified that we can indeed make (3x + 4) as close to 10

as might be demanded (i.e., arbitrarily close; just name whatever £ > 0 you would like),
simply by making x sufficiently close to 2. Furtheér, we have explicitly spelted out what
“sufficientiy close to 2" means in the context of the present problem. Thus, no matter how
close we are asked to make (31 + 4) to 10, we can accomphsh thls simply by mkmg xto
be in the specified interval, :
Next, we examine this more precise nonon of lnmt in the case of a function tint is not
defined at the point in qucsnon : : ‘

X AMPLE 6.2 Proving That a Limit Is Correct

D23 42 4
Prove that lim ———— = 6.

] X - i :
Solution It is easy to use the usual rules of Hmits to establish this result. It is yct
another matter to verify that this is correct using our new and more precise notion of

limit. In this case, we want to know how close x must be to | to ensure thal

F) = 2 +2\1 4

is within an unspecified distance £ > G of 6. _ :
First, notice that f is undefined af x = 1. So, we scek a distance § (deita, § > 0),

such that if x is within distance § of 1;butx #£ 1 {i.e, 0 < ¥ — ]| < 8), lhcn this

guarantees that | f{x) — 6| < £
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FIGURE |.46 |
0<v—1] < -g guarantees that

24 2x —4
6—e3<——~m~7l + '11 <64
. ". -

L - &

> X

a— 3§ aJer

FIGURE |.47
a — 8 < X < a+ 4 guaraniees that
L—t< flx)<L+4¢.

* Since the numerator factors, this is equivalent {0

Noncc that we have specified that 0 < |x — 1| to ensure that x #* 1. Further,
| f(x}—~ 0| < & is equivalent to .

25420 -4
—o < — --——()<£
a1

Finding a common denominator and subtracting in the middle term, we get

Wb —d- 6 - 1) ' 207 ~dy 2
—£ < - l — < £ Or ,——'s<_~——,—‘_—T—-.- < &
X - . X — '

2Ax — 1)?
— < £
x—1

—E& <

Since x # 1, we can cancel two.of the factors of (x —~ 1) to yield

—g<2x—-N<e

£ | &
or — X —1 o o, e
2 2

which is equivalent to [x — 1| < &/2. So, taking § =¢g/2 and working hackward, we see
that requiring x to satisfy

e £
O<lx—1|<d==
_,_<:|x | < 5

42 -4

will guarantee that —7 6] = ¢
: X -

We illustrate this graphically in Figure 1.46. &= . ... o

What we have seen so far motivates us to make the loilomng geneml definition, illus-
lr'lted in Figure }.47.

BEFINITION 6.1 (Precise Definition of Limit)

For a function f defined in some open mterval cont.nmng a (l)ul not uecessmly ata
itself), we say

lim f(x) = L.
Rand

if given any number ¢ > 0, thuc is another number § > U, such thut (J <|lv—al <48
},mmnlees that If(\) — L] <e&.

Notice that example 6.2 amounts to an illustration of Definition 6.1 for [in;(S.r + 4).
N B X— .

There, we found that § = ¢/3 satisfies the definition.
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‘Paul Haliios (1916= ) A~~~

“Hungarian-born mathematician -
‘who earned a reputation as one .
of the best mathernatical wiriters

ever. For Hatmos, calculus did not.

come easily, with understanding

comirig In a flash of inspiration - : .
only after a fong period of hard -~

ok, “ remember standing at -

:the blackboard in Room 213 of

:-.the mathematics building w&th
Warren Ambrose and suddenly .

“understood epsdons lunderstood‘

what llm:ts were, and alt of that -

stuff that people had been dnlllng '

into me be_came clear. ... lcould
prove the theorems, That .
afternoon | became a
mat.hematsaan

- FIGURE |.48
0 < v — 2| < & guarantees that
[(x*+ B -5 <e

-of I and g) Working backward, we get that for this cheice of §,
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We want to emphasize that this formal definition of limit is not a new idea. Rather, it '
is a more precise mathematical statement of the same intuitive notion of limit that we
have been using since the beginning of the chapter. Also, we must in all honesty point
out that it is rather difficult 10 explicitly find & as a function of &, Tor al but a few
simple examples. Despite this, learning how to work through the definition, even for a
smail mimber of pn oblems, will shed mneldex able light on a deep concept,

Example 6.4, although only slightly more comptu than the Jast several problems,

-provides an unexpected challénge.

AR ST 8

EMAMPLE 6.4

Use Definiton 6.1 to prove that hm(.1 +1)= 5.

Usm-g the Precase Deflmtlon of L!mlt

Holution T this Hinit is correct, tilcn givenany £ > 0, thcre must be a § > 0 for which
0 < |x — 2] < & guarantees that

24+ 1) — 5| <&
Notice that
24 1) — 51 = e — 4
= |x - 2ljx —2[.

(6.2).

Qur strategy is 1o isolate b — 2{ and so, we’ll need to do something with the term™
Ix + 2|, Since we're interested only in what h’lp])CI‘]b near x = 2, anyway, we will only
consider x’s within a distance of | from 2, that is, £°s that lie in the interval {1, 3}
(so that |x — 2| < 1), Notice that this will be true nfwc :cquue §<land|xr —2} < 8.
In this case, we have
|,\' +2| < 5, T
and so, from (6.2), :
(2 1= 5| =[x - 2ix — 2|
< 5lx — 2. {6.3)
Finally, if we require that _
Slx =2| < &, {6.4)
then we will also have from (6.3) that
12 4 l)—5| < 5li =2 <&
Of course, (6.4) is cqulvalent to

-2 <

u«lm

So, in view of this, we now have two restrictions: that |x — 2| < | end that |x - 2] < E.
To ensure that both restrictions are met, we choose 8= min. { l, —2] (i.c., the minimum
0<|x —2| <8

will guarantee that '
ltx? 4 1 =5 <,
as desired. We illustrate this in Figure 148, =
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FIGURE 1.50a

. onx
y =sin—
2

_picture for any given value of &, since we have an explicit formula for linding § given e,
For most limit problems, we are not so fortonate, # .. e e

" given. First, fore = 3 we would like to ﬁnd a § > (O for whichilf 0 < i1 - 2| < 4§, then

154 -

O Exploring the Definition of Limit _Graphicali)i_

As you can see from example 6.4, this business of finding §’s for a given & is not eastly
accomplished. There, we found that even for the comparatively simple case of a quadratic
polynomial, the job can be quite a challenge. Unlortunately. therfe is no procedure that will
work for all problems, However, we can explore the definilion graphically in the case of

more complex functions. First, we reexamine example 6.4 gmph_ical!y.

IR e 7 S,

HAMPLE 6.5 Explorlng the Precise Definlt:on of Llﬁlf (VSI'aphlcall),r

Explore the precise definition of limit graphicatly, for hmz(.r + 1) =35
: Lo L ed :

oy . e
selution  In example 6.4, we discovered that for 8 = min [ 1, 3 ],
0 < |v - 2| < & implies that (x> + 1) — 5] < &. .

This says that (for £ < 5 }if we draw a graph of y = x% 1 and restrict the x-values to

lie in the interval (2 3 24

5) then the y-vatues will lic i in thepfatcr\ alS—-¢& 548 .
Take e = 7 for instance. If we draw the graphin the window defined by

1 1
2 — <y <24+ —and 4.5 < y < 5.5, then the geaph will not run off the top or - -

bottom of the screen {(see Figure 1.49). Of course, we can draw virtually the same

Exploring the Definition of Limit for a
Trigonometric Function
.
Graphically find a 8 > 0 corresponding to (a) & = - and (bye =0.1for

CLomx -
limysin —— = 0.
fingsin
. . ‘ N o o :
Seintion  This limil seems plausible enough. After all, sin — .= Oand f(x) =sinx

is a continuous function, However, the point is to vcmy this La:elully Gwen any ¢ > 0,
we want to find a d = 0, for Wthh

X
0 < |v - 2| < & guaranices that ‘sm 5 0' < E.
mx
Nole that since we have no atgebra for simplifying sin —, we cannot accomplish this
symbolically. Instead, we'll try to grz ﬁphluilly find 8’ corresponding to the spcmﬁc E's

1 . WX 0 i
—= <sin— --0 < -,
2 -2
T 1
Drawing the graph of » = sin _2._ with 1 <x < 3and 5 = <=y= 5 we get
Figure 1.50a. :
If you trace along a calculator or LO[llplllCl graph, you will notice that the graph
stays on the screen (i.c., the y-values stay in the interval {—0.5, 0.5]) for




x € [1.666667,2.333333]. Thus, we have dclermiﬁed experimentally that fore = -,

will work. (Of course, any value of & smaller than 0.333333 will also worky To

FIGURE 1.,50b

. TX

¥ = sin—

X2

".-.ﬁ BN BV ]

Q.1 103711608
0.0t 1.06037461

0.001 .03 7496
0.0001 | 1.0000375

b1 .
- guarantee that siz — stays between —0.1 and 0.}, We redraw the graph from Figure

“1.50a, with the y-range restricted to the interval [—0.1, 0.1] (see Figure 1.51x). Aga'in_',
‘tracing along the graph tells us that the y-values will stay in the desired range for
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.
) 2
=2.333333 — 2 = 2 — 1666667 = 0.333333

illustrate this, we redraw the last graph, but restrici x to lie in'the-interval [1.67, 2,33]
(see Figure 1.50b). In this case, the graph Stays in the window over the entire range of -
displayed x-values, Taking ¢ = 0.1, we look for an interval of x- vltlus_s that -will

x € [1.936508, 2.063492]. Thus, we have expm‘i_mc_ntdlly determined that -
§ = 2.063492 — 2 = 2 — 1.936508.= (.063492

will work here, We redraw the graph using the new range of x-values (see Figure 1.51b),
since the gnph remains in the window for atl valms of xin the indicated interval,

¥ : : -y

A 4
O‘IAA e ¢ . . O.I T . .
| N
T 4 . T s
A xl ¥ X - - - » X
1.7 Z\ 23 .
._'0.1“.,,.,.,,‘ . ,70'1— .
FIGURE |.5fa C o FIGURE [.51b
) = sin e o ; = §in ™
y=sme ) 2

It is important to recognize that we are not proving that the above limil is correcl,
To prove this requires us to symbolically find a 8 for every £ > 0. The idea here is to use
these graphical illustrations o become more f'umlmr with the definition and wnh what §
and £ represent 3 S O

B CTRTIEET T b e e

E}{fk”\”fi‘

LE 6.7 Explo: |ng the Deflmtion of Ltmlt
Where the Limit Does Not Exist
Determine whether or not !lm C 42
Tl I ether e —
-0 T Ay

Salution  We first canstruct a table of function values. From the table alone, we might
be tempted to conjecture that the limit is 1. However, we would be making a huge error,
as we have not considered negative values of x or drawn a graph. This Kind of
carelessness is dangerous, Figure 1,52a {on the.following page) shows (he default graph
drawn by our computer algebra system. In this graph, the function values do not quite
look like they are approaching 1 as x — O (at least #s x — 07). We now invéstigate

the limit graphically fore = % We need to find a 8§ > 0 for which 0 < [x] < &
guarantees that .
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- window (see Figure 1.52b). Notice that no points are plotted in the window for any
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FIGURE i.52a FIGURE 1.52b
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! 3
or - e <
2 Ve aa? 2
We (ry § = 0.1 1o see if this is sufficicntly small. So, we set the x- rangQ to the interval
{—0.1, 0.1] and the y-range to the interval [0.5, 1.5] and redvaw the graph in this

x < 0. According to the definition, the y-values must lie in the interval (0.5, 1.5) for aif
v in the interval (=8, 8). Further, you can sce that § = 0.1 clearly does not work since
x = —0.05 lics in the interval {(—§, 8}, but f(—0.05) == —~0.981 is notin the interval
(0.5, 1.5). You should convince )'foﬂrsell' that no matter how small you make 4, there is
an x in the interval (—8, 8) such that f(x) ¢ (0.5, 1.5). (In fact, notice that for all ¥'s in .
the interval (—1, 0), j‘(z) < 0.) That is, there is no choice of § that makes the defining
inequality tme for & = 5 Thaus, the con]cctu:ed limitof T is incorrect.

You should note here that, while we’ve only shown that the fimil is not 1, it’s
somewhat more complicated to shiow (hat the limit dow not cﬂlst - S

- O Limits Involving Infinity

. 1 . . ] '. . .. . )
Recall that we had observed that iin%] — does not exist, but to be more descriptive, we had
. =0y .
writlen

1

hm — = 00,
— \2

By this statement, we mean that the function increases w:lhoul bound as x — 0. Just as with
our initial intwitive notion of hm Sy ==L, this dc&;cuphon is imprecise and needs to be

" more carefully defined. thn we say that — mcreasca without bound as x —» 0, we-mean

that we can make 5 s large as we like, mmply by nnkmg x sufficiently close to 0. So,
1
given any large posmvc number, M, we must be able o make — > M, for x wtﬁc1cn11y

close to 0. We measure closencss here the same way as we (lld betore and arrive at the
following definition. :
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FIGURE 1.53
o I{m flxy=00

FIGURE {.54

fim f(x)=—o0
R 27 ) . .
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DEFINITION 6.2

For a function f defined in some opcn mtc:val cont'unmg a (but not neussm |ly ata
itself), we say .
lim f(x) ==

X—a-

if given any number M > Q, there is another miml}cr 8 = O, suchthat0 <'fv —a| < § .
guar’mlecs that j (\) > M. (&.ee l*lgurc 1.53 for a gmphlcal inter, plclanon of this.)

Similarty, we had S'lid that if f decteascs without bound as x - a, then

lim f(x} = —co. Think of how you would make this more precise ancl then consider the
A—=a
following dcﬁmnon

BEFINITION 6.3

For a function f defined in some open inter ml cont'umng a (but not ncccsvu;ky ata
ht%elf) we say

Hm f{x) = -0

X0
if given any number N < 0, there is another number& > () such that 0 < [v < al <8
gum antees that f(\) < N. (See Plgune 1.54 for a gmphlwl 1erp|cl‘mon of tlus)

It’s easy to keep these definitions straight it you think of their mcamng Don’t sunply
nmemorize them.

LTI AU R AT SRR 285, SR — S —— R

EXAMPLE 6.8 Usmg the Deflnltion of lelt Where the Limit Is Infinite
Prove that lim —15 = 00,
x—0x

Solution  Givenany (large) number M = 0, we need 10 find a distance § > O such th'\t
if x is within & of 0 (hut not equal to 0) then

I ' :
?2—>M. o . {6.5)

Since both M and x? arc positive, (6.5) is ¢guivalent to
' i
e =
M-

Taking the square root of both sides and recalling that \/\7 = |x|, we gel

|x| "\/ :
| =< _—
* M

So, for any M > 0, ifwetaked = \/;—; and work backward, wehave that0 < [x —0f < &
guarantees that ' '
1
—_ > M
w2
' ' S I .
as desired. Note that this says, for instance, that tor M = 100, = > 100, whenever

- 1 ‘ o -
0<|x] < I =10 {Verify that this \\:forks, as an exerc-:ise.) _
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1 > ¥
M
FIGURE 1,55
Eim‘f(.\') =L
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FIGURE 1.56
Jim f() = L

There are two remaining limits that we have yet o place on a carefu) footing, Before
reading on, try to figure out for yoursell what appropriate definifions would look like.
If we write llm F{x)y = L, we mean thal as v increases wnthoul buund S(x) gets

closer and closer to L That is, we can make f(x) as close [ L as we h!\b by choosmg X
sufficiently large. More preciscly, we have the foltowing definition,

FREFINIYION 6.4

For a function f defined on an ititerval (o, oc), lof spme a > 0, we say

lim f(x)= L
ATFOD .
if given any £ > 0, there is a number M > { such that x > M guarantees that

|flx) —Li<e.
(§Le Flgunc 1.55fora gi’lpthJ] nnc:plel‘mon of this.)

Similarly, we have said that lm  f(x) = L means that as x decreases without bound,
X——0C o

F(x) gets closer and closer Lo L: So, we should be able to make f(x) asclose to L as desired,
just by making x sufficiently large in absolute value and negative. We have the following
definition. ’ ’

FEFINITION &5
For a fanction f defined on an interval (—o0, a), for some a < 0, wc'szty

lim fv) = L,

R Raduc]
if givenany ¢ > 0, there is a number N <0 «.uch Ihal x <N g,u'n antees that
[£Qx) -~ Li <&

(See Flgutc 1.56 fora ;,mpiucwl mtelpleiauon of this. )

Y

We use Definitions 6.4 and 6:5 essentially the s;'zmle as we . do Definitions 6.1-0.3, as
we see in example 6.9. :
Usmg the Deflmteon of Llrmt
Where x Is Becoming Infinite

S —

I )
_ Prove that lim — =10,

T>—00 X

: ‘ t
ohation  Here, we must show that given any ¢ >0, we can m'ils.e — withir € of 0,

snnply by making x sufficiendly large in ﬂbe]l!iC value and :1eg‘1t:vc So, we nccd to
determine those x's for which

or < E. . ‘ ' (6.6}




You should fake care to note
the commonality among the
definitions of the five limits we
have given. ANl five deal with a
precise description of what it
means to be “close.” It is of
considerable benefit to work
through these definitions until
you can provide your own
words for each. Don’t just
memorize the formal definitions
as stated here. Rather, work

toward understanding what they

mean axd come to appreciate
the exacting language
mathematicians use,

. that this will change the direction of the incqualiLy), we get

So, if we take N = —— and wmk backward, we lm'c satisfied the deﬁmuon and (hc:cby
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Since x <0, |x} = —x,and s0 (6.6) becomes
1

— << &,
—X-

Bividing both sides by £ and multiplying by x (remcmbcr that x < Oand & > 0, so

L }
- > X.
E ’

£
provcd hat the lineit is correct, e e

We don’t use the limit definitions 10 prove cach and-every limit that comes along.
Aclually, we use them to prove only a few basic limits and to-prove the limit theorems that
we've been using for some time without proof. Fuither use of these theorems then provides
solid justification of pew limits. As an illustration, we now prove the rule for a limit ofa sum,

!HLf}RFM P %_ _
- Suppose that for a real number a, lim flx)= Li and lim g{x) = L. Then,
X X—a

llm[j(\) + g} = 11m Jx)+ li_|31 g =L+ La.

PROOF

Since lim f(x) = L, we know that given any numbu g, = 0, thereisa numbe] 31 > 0 for

X—a

which
0 < |x —a] < §) guarantees ﬂlai | f(x) = Ly} < e ‘ .(6;7)

Likewise, since lim g(x) = L': we know-that given an) iwumber &, > 0, there is a mlmber

K=

8> > O for which .
0<|x ;q| < & guarantees that |g(x) = La| < &2 ey
Now, in order to get . | : .- ,. -
)+ g = (L L),
we must show that, given any number £ >- U, there is a_:numl.)cr § = 0 such that
0 < v —a| < & guarantees that |{ (v - g} — (L, + L3)| <&
Notice that

)+ 8] — U + L)l = El.f(-\') — Ly} +[gex) = Lall _
S _Ll] +1gx) = Lal, (5-9)

by the triangle inequality. Of course, both terms on the right-hand side of (6.9) can be made
: . &
arbitrarity small, from (6.7} and (6.8). In particular, if we take 5) =63 = 5 then as long as

0 < |.1"— al <8 and 0<|x~al <.
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we get from (6.7), (6.8) and (6.9} that

[LF G+ g(x)] - (Ln +La)} <

|f(\)* Lll + |8(1) — La|

<5+—“‘

as desired, Of course, this will happen if we take

0 < |t u-al < 8~mm[8| 82} " .

The other rules for limits are proven similarly, using the definition of limit. We show

these in Appendix A,

®WRITING- EXERCISES

In his 1726 masterpiece Mathematical Principles of Natu-
ral Phifosapiry, which introduces many of the fundamentals
of calculus, Sir fsaac Newton described the important fimit
lim fa+h)— fla)

h—0
as “the limit to which the ratios of quantities decreasing without

limit do always converge, and to which they approach nearer
than by any given ditference, but never go beyond, nor ever
reach until the quantities vanish.” 1f you ever get weary of alf
the notation thit we use in calculus, think of what it would lock
like in words! Critique Newton’s definition of limit, addressing
the following questions in (he process. What restrictions do the
phrases “never go beyond” and “never reach”™ put on the limit

process? Give an example of a simple limit, not necessarily
fla+h)-

(which we study at length in Chapter 2)

fa)

of the form llm , that violates these restric-

tions. Give your own (Lngllsh langu*u,e) description of the
limit, avoiding restrictions such as Newton’s. Why do mathe-
maticians consider the £—8 definition simple and elegant?

You have computed numerous limits before seeing the def-

inition of limit. Explain how this definiticn changes and/or

improves your understanding of the limit process.

Each word in the e—§ definition is carefully chosen and pre-

cisely placed, Describe what is wrong with each of the follow-

ing slightly incorrect “definitions” (use examples!):

(a) There exists & > 0 such that there exists a 8 > 0 such that
ifO < |x ~al < 8, then | f(x)= L <&

(b) Forall e > 0and forall § = 0, 1f0 < |x —aj < §, then
[fe)y — LY <&,

(¢) Forall§ > 0 there exists & > O suchithat 0 < |x —a| < 8
and | f{x) — L] <&,

. In order for the limit to exist, given every £ > 0, we must

be able to find a § > O such that the il/then inequalities are
true. To prove that the imit does not exist, we must find a
particalar £ > 0 such that the if/then inequalities are not true
for any chwice of § > 0. To understand the logic behind the
swapping of the “for every” and “there exists” roles, draw an

analogy with the following situation. Suppose the statement,

“Everybody loves somebody™ is true. If' you wanled to verify

the statement, why would you haye to talk to every person on

‘carth? But, suppose that the statement is not lrue, What would
" you have to do to disprove 17

1n exercises 1-8, numerically and graphically deternijne a 8 cor-
responding to (a) £ = 0,1 und (b) & = 0,45, Graph the function
in the € ~ & window [x-range is (¢ ~ 8, & + &) and y-range is
(fl—e L+e¢) ]lo verify that your chmu works. '

1. lméu + D=1 2 lm‘%(.\ = 5

3. limcosx =1 4, lim cosx =0
ka0 S . (—rr,i
5. lim Vx + 3= 2 6 hm VX ¥3 3 =1
x+2 ) 42 .
7, lim 2t =3 8. lim L% =
y=1l X . =2y
In exercises 9-20, symbolically find 6 in {erms of e.
9, iinb3.\' =0 o 10. lim3x =3
1L lim(dx +2) =38 o2, lim (3x +2y=5
13. lin} (3 —dx)=—1 . 14y lim (3 —4xy=7
(534 ) . =l
-2 - X1
15. .Him v =3 16. hm ! =2
) vyl xr—1 ' B ——1 ¥ 41 .
17. -1iml(x? -D=0 18, limG? —xd =1
i —
19. '1im(t2 —1y=3 S0, 1im(r‘+ i): 1

21{. Determine aformulaford interms of & for llm(m X+ B). {Hlm
Use exercises 9-14.) Does the formula d:,puld on the value of
a? Try to explain this answer graphically.

22, Based on exercises {7 and 19, docs the value of § (le'peﬁd on
the value of « for lim(x2 + 5)? Try to explain this graphically.
k) K ot .
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23. \mdify the £ — & definition to define the one-sided limits
lim f(x)and lim f(\)

et

24, Symbolically find the largest § corresponding to £ = 0.1 in
the definition of lsm I/x = L. Symbolically find the lurgest
N

& corresponding lo £ = 0.1 in the definition of ]ll]ll ljy =1L
Which & could be used in the definition of lun 1/x = 1?7 Briefly
explain, lhm prove that ]|m I/x=1L

In exercisfs 25-30, ﬁnd i 6 corresponding to M = {00 or

N = — 100 (as appropriate) for each linit, .
2
25, lim =00 26. Hm —— = —00
it x— 1 - — 1
27. litm colxy = o0 28. lim cotx = —0
XUt >~ :
29, tim L2 = 00 30, I1m Inxy = —o0
C o 12 e

In excrcis_és 31-36, find an Af or N correspondingtoe = 0.1 for
each lmit at infinity.

Ny : 2
3L lim —— = =y 32 dim e =
B e oo v2 x4 1
2 3,1‘2 . 2
33 JEEP_ ‘2{ 7 = 0.25 3, ‘Erpm ST =
T .
35, lim ¢ =0 36, lim L o
kil ; oo gf — x2

In exereises 37-46, prove that the limit is correet using the ap-
propriate definition (assume that & is an integer),

3
Hin - = 0
K0 X

37, lim % =0 38,

I—=m0 v

; 1 .
39, lim 5= 0, fork =0 40. lim = = 0, fork >4
o Y I —0 X

41, lim ( : -3) =3 | 42, lim : =0

T \xT42 T/ T (x =7
B lim = . Jim o =

. =6

BT RN

In exercises 47-50, identify a specific £ > 0 for whichno 6 >> 0
exists to satisfy the definition to limit,

2y ifx <1
47, fixy=1 ", s dim f{x) #2
) {.1'24-3 x> 1 o
x2--]1 ity <0
L [y = 1 : hmf(x);& -2
B Sl { —x -2 ifx=0 0

49,

‘50,

5L

52.

83,
54,

55.

56.

-1

58,

5 59.

60
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o ifr<]
(v} = . ]m)j(r);éQ
7 {5—;3 x> 1

y—1 ifx<2’
(1) = » l]]Tl Fx)#1
Iy {.\'2 iftx »2 22

Ametal washer of {outer) radius r-inches weighs 277 ounces. A
company manuizctures 2-inch washers for ditferent customers
who have ditferent error telerances. If the customer demands
a washer of weight 8 ¢ ounces. what is the error tolerance
for the radius? That is, tind'd such that a radius of r within
the interval 2-482+8 g,u'tr'mtees a wught within (8§ —¢,
8+ &)

A fibergluss company ships its glass as spherical marbles. If
the volume of each marble must be within € of 1 /6, how close
does the rudins need to be to 1/27

Prove Theorem 3.1 (3).
Prove Theoretn 3.1 (i)
Prove the Squeeze Theorem, as stated in Theorem 3.5.

Given that Hm f(x) =

X

lim f{x) =L
T-sa

L and ]im; Fiv) = L, prave that

Prove: if lim f{x) = L, then im[ f{xy— L) =0
> Xy

Proverif l?m[f(.\') — L] =0, then l':_m flx)y=1L.

In this exercise, we expiore the definition of lim2 x? =4 with
; —

£=0.1. Show that x> —4 < 0.1 if 2 <x < v4.1. This
indicates that 8, = 0.02484 works for x > 2. Show that
v2—d > =03 if 39 <x <2  This indicates that
§; = 0.02515 works for x < 2. For the limit definition, is
8 = 8] or § = §; the correct choice? Beiefly explain.

Generalize exercise 59 to find a § of the form V4 +¢ or
V4 — & corresponding to any & > 0.

<2

EXPLORATORY EXERCISES

. We hope that working through this section has provided you

with extra tnsight into the limit process, However, we have not
yet solved any problems we could not already solve in pre-
vicus sections. We do so now, while investigating an unusual
function. Recall that rational numbers can be writien ds frac-
tions p/q, where p and ¢ are integers. We will assume that
p/q bas been simplified by dividing out common factors (e.g.,

. 0 if x is irrational
1/2 and not 2/4}. Define f{x) = /g ifx = Lis rational
x = L5 rationg

We will try to show that li];}! f(x) exists. Without graphics,
. A —2/0 )
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we need a pood definition to answer this question, We know

that f{2/3) = /3, but recall that the limit is independent of

the actual function value, We need to think about x's close
to 2/3. If such an x is ireational, f{x)=0. A simple hy-
pothesis woutd then be lim f(.r) = 0. We’ll try this out for

£ = 1/6. We would like lo gmmntee that |j(r)| I/6 when-
ever 0 < |x — 2/3] < & Well, how many x’s have a function
value greater than 1/67 The only possible function values are
1/5, 1/4, 1/3, 1/2 and 1, The x’s with function value 1/5 are

. S!dlc a definition for " f{x) is continuous aty =

1-62

is 3/5. Find thie closest ¥ (nof counting X = 2/3) to 2/3 with
function value 1/4, Repeat for f(x) =.1/3, f(x) = 1/2 and
~ f(x)= 1. Out of all these closest xs, how close is the ab-

solute closest? Choose § to be this number, and argue that if
0 < Ix — 2/3] <4, we are guardnteed that | f(x)] < 1/6. Arf
gue llnt a simitar process cun find a § for any ¢

1" using Def-
inition 6.1. Use it 10 prove that the function in exploritory
exercise | is continuous at every trrational number and dlsum-
linuous at every rational number.

¢

{’

1/5,2/5, 3/5, 4/5 and so on. The closest of these x’s 10 2/3

ama i STINILC Lt e Aot e

L

. produce somewhat difterent results, but for large values of x, you should see results

20000 60,000
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>> i/ LIMITS AND LOSS-OF-SIGNIFICANCE ERRORS

“Pay no attention to that man behind the curtain , .. ." (from The Wizard of 0z)

Things are not always what they appear 1o be: We spend much time learning to distinguish
reality from mere appearances. Along the way, we develop a healthy level of skepticism,
You may have already come (o realize that mathematicians are a skeptical lot. This is ol

necessity, for you simply can't accept !hmgs al face value.

People tend to accept a computer’s answer as a fact not subject to debate. However,
when we use a computer (or caleulator), we must always keep in mind that these devices
perform most computations only approximately, Most of the time, this will cause us no
difficully whatsoever. Modern computational devices penerally carry owt calenlations to a
very high degree of accuracy. Occasionally, however, the results of round-off errors in a
string of calculations are disastrous. In this section, we: briefly investigate these errors and
learn how to recognize and avoid some of them.

We first consider a relatively lame-looking cmmple

T S S e e R

EXAMPLE 7.1 A Limit with Urnusual Graphicai and
Numerical Behavior :
@ +4)°

3

Evaluate lim
=00 X

Selution Al first glance, the numerator looks like 00 -~ o, which is indeterminate,
while the denominator tends to oo. Algebraically, the only réasonable step to take is to
multiply out the first term in the numerator: Before we do that, let’s draw & graph and
compute some function values. (Different computers and different software will

similar to those shown here.) In Figure 1.57a, the function appears nearly constant, uatil
it begins oscillating around x = 40,000, Notice that-the accompanying table of luncuon
values is inconsistent with Higure 1.57a.

The last two vaktcs in the table may have surprised you. Up until that pomt the
function values seemed to be settting down to 8.0 very nicely. So, what happened here
and what is the correct vatue of the limit? Obviously, something unusual has occurred
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we need a good definition to answer this question. We know
that £{2/3) = 1/3, but recall that the limit is independent of
the actual function value. We need to think about x’s close
to 2/3. If such an x is irrational, f(x)=0. A simple hy-
pothesis would thent be ([i,:;}l Fix)y=0. We'll try this out for

£ == 1 /6. We would like to guarantee that | f(v)| < 1/6 when-

ever 0 < Ix — 2/3] < &, Well, how many x’s have a function

value greater than §7/6? The only possible function values are
175, 174, 1/3, /2 and 1. The x's with function value 1/5 are
1/5,2/5, 3/5 4/5 and so on. The closest of these x's to 2/3

s L S ssisari

“Pay no atiention to that man behind the curtain. . ..”

S T RS TS U Rt e Y AYERRTS T

1-62

is 3/5, Find the closest ¥ (nof counting ¥ = 2/3) 10 2/3 with
function value 1/4. Repeat for f(x) = t/3; f(x) = 1/2 and
flxy = 1. Out of alt these closest x’s, how close is the ab-
solute closest? Chobse & to be this number, and argue that if
0 < |x — 2/3| < &, we are guaranteed that | f(x)] < 1/6. Ar-
gue that a similar process can find a § for any £.

. State a definition for ** f(x’) iy continuous at x = «" using.Def-

inition 6.1. PJse it'to prove that the function in exploratory
exercise 1 is continuous at every irrational number and discon-

- tinuiois at every rational numiber.

@) 1.7 LIMITS AND LOSS-OF-SIGNIFICANCE ERRQRS

(from The Wizard of 0z)°

Things are not always what they appear to be. We spend much time learning to distinguish
reality from mere appearances. Along the way, we develop a healthy level of skepticism.
You may have already come to realize that mathematicians are a skeptical lot. This is of
necessity, for you simply can’t accept things at face value. ' '
People tend to aceept a compuler’s answer as a fact not subject to dcbate However, -
whcn we use a computer {or calculator), we must always keep in mind that these devices
perform most computations only approximately. Most of {he time, this will Cause us 1o
difficulty whatsoever. Modern computational devices generally carry out mlcuhtmm toa
very high degree of accuracy. Occasionally, however, the results of round-off errors in a
string of calculations are disastrous. In this section, we bricfly investigate these errors and
learn how to recognize and avoid some of them. ’
We first consider a refatively lame-looking example,

b4 mepivs L - e

EXAMPLY

.0A Limit with Unusual Graphlcal and

Numerical Behavior

Evaluate lim
' 00 X

(34— 18
—

Sofation At first glance, the numerator tooks like oo — 0o, which is indeterminate,

while the denominator tends to co. Algebraically, the only reasonable step to take is to
multiply out the first term in the numerator, Before we do tha, let’s draw a graph and
compute some function values. (Different computers and difTererit software will

produce somewhat different results, but for large values of ., you should see results -
similar to those shown here.} In Figure 1.57a, the function appears nearly constant, until -

4
1 } 1 4 » X

I
20,000 60,000 100,000

FIGURE 1.57a
IR

" it begins oscillating aiound x = 40,000. Notice that: the qccompmymg table of luncuon

values is inconsistent with Figure 1.574. :
The last two values in the table may have surpmcd you Up until that point, the

function values seemed to be settling down to 8.0 very nicely. So, what happencd here -

ad and what is the correct value of the timit? Obviously, something unusual has occurred
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between ¥ = 1 x 10% and x = t x 10°. We should look c‘lrciully it function values in
that interval. A more detailed table is shown below to the right.

Incorrect l;'_ﬂlCllhl[Cd values

el T e
. o -.\‘3 : o - M - : T -x_x
10 8.016 2 x 10° 8.0
100 8.000016 3% 108 8.14815 .
1x 10 | 80 4 x 0% | 7.8125
1 x 10 | 80 : _ 5% 10° 0
1x10° | 0.0 L
1x 10° | 00

_ Tn Figure 1.57b, we have blown up the-graph-to enhance the OScrilI'ation observed
between x = I x 10* and x = 1 x {0%, The picture that is emerging is even more
confusing. The deeper we look into this limit, the more eiratically the function appears

“to behave, We use the word appears because all of the oscillator y Behavior we are

seeing is an illusion, created by the finite precision of the computer used to per ﬁ:n m the
calculations or draw the graph. & SO e e e e e e

() Computer Representation of Real Numbers

"The reason for the unusual behavior seen in example 7.1 boils down to the way. in which com-

puters represent real numbers, Without getling irto all of the intricacies of compuier arith-
metic, it suffices to think of computers and calculators as storing real numbers internally in
scientific notation, For example, the number 1,234,567 would be stored as 1.234567 x 10°,
The number preceding the power of 10 is called the muntissa and ilu, power is C‘ll]ed the
exponent, Thus, the mantissa here is 1.234567 and the exponent is 6.

All computing devices have finite memory and cansequently have limitations on the

size mantissa and exponent that they can store. (This is called finite precision.) Many

caleulators carry a t4-digit mantissa and a 3-digit exponent. On a 14-digit computer, this
would suggest that the computer would retain only-the fir st 14 digitsinthe decmnl expansion
of any given number.

B XﬂVPLE 7.7 C.ompute: Representatlon ofa Ratlonal Number

1 2
Determine how — is slmedmtern’illy ona 10-digit Compltlel and how = 3 is stored mtermily
ona l4. chgn computer. ‘

1
Solution On a 10-digit computer, 3 is stored nnermlly as 3. 33”»333333 %1071, On a

2 - J
14-digit compulter, = is stored internatly as 6.6666666666667 x 107L,
3T —————

For most purposes, such finile precision presents no problem. However, we do oc-
casionally come across a disastrous error caused by finite precision. In example 7.3, we
subtract two relatively close numbers and examine the resulting catastrophic crror.




136

CHAPTER 1

“

Limits and Continuity : . i ’ 1-64

v - R

EXAMPLE 7.5 A Computer ‘Subtraction-of Two “Close” Numbers !
Compare the exact value of '

I. 00000000000004 x 108 -~ 1. 00000{)00000001 X m“’
with the result obtained from a calculator or comptiter with a 14-digit mantissa.
Sokutlon  Notice that ' ' - _ . I E .

©1.0000000000000 4 % 10" — 1.0000000000000 1:10'8 = 0. 00000()00000003><10‘3
e e __,_____/ ',.—_a

Prrepi

= 30,000, (.0

However, if this calculation is carried out on a computer or catculator with a 14-digil
{or smaller) mantissa, both numabers on the-teft-hand side of (7.1) are stored by the

computer as 1 x 10'8 and hence, the difference is calculated as 0. Try this calculation
for yomsc[f MOW. B o

é‘_:}u\i“vi P}.s., f.fi Anothér Subtractton of Two “Close Numbers

Compare the exact value of _
1..0000000000000 6 x 102 — 1. 0000000000000 4 x 102
Nt mitir rerer e e
with the result obtained from a calculator or compuier with a. 14-digit mantissa,
Satution  Notice that

1.0000000000000 6 x 10%° — 1.0000000000000 4 x 1020 — 0,0000000000000°2 % 10’2“
. St o e’ e o e’ ‘-—————v—"

IR RS TEH S

= 2 000, OOO

However, if this calculation is carried out on a calculator with d' 14-digit mantissa, the
first number is represented as 1.0000000000001 x 10%, while the second numbet is
represented by £.0 x 10%, due (o the finite precision and rounding. The difference

- between the two values is then Lomputcd as 0.0000000000001 x 0% or lO 000,000,
which is, again, a very Serious eIror, B s o O —

In examples 7.3 and 7.4, we witnessed a gross ervor caused by the subtraction of two
numbers whose significant digits are very closé to one another. This type of error is called
a loss-ol-significant-digits error or simply a loss- 0f—signiﬁmme error; These are subtle,
often disastrous computational errors. Returning now 1o example 7.1, we w1]l see that it
was this type of error that caused the unusual bchfwtor noted.

CEYAMPL .5 A Loss-of-Significance Error
4
In example 7.1, we considered the function f(x) = (—-ﬂ-:-r—l—u—l_. : L
v :

Follow the calculation of f(5 x 10y one stepatatime, usd i4-digil computer would doit.




It at all possible, avoid

subtractions of neurly equal

values. Sometimes, this can be
accomplished by some algebraic
maniputation of the function.

¥
&
9..-
8,,, - s e
7_..
+ } } 1 t X
20,000 60,000 100,000
FIGURE 1.58
8 + 16
y=—-—5
a
83 -+ 16
A 3
3 X
10 8.016
100 8.000016
{ x 10 8.000000016
I x 10% 8.00000000002
1 x10° 8.0
1 x 10° 3.0
1 x 107 8.0

w00.

. SECTION 1.7 =» Limits and E..oss-of-Signiﬂcance Errors 137
Solution We have

TS % EOMYY 4] = (5 % 10M0 -
(5 x 104 _
_ (1125 x 107 +4)? - 1.5625 % 10%
C1.25 x- 104
(125 000,000,000,000 -+ 4)* — 1.5625 x 1023 :
_ 1.25 x 1oM
(1.25 x 10M)? — 1.5625 x 10%
T TRV -

F5x 1=

singe 1235,000,000,000,004 is :ounded off 10 125,000,000,000,000.

~ Note that the real culprit-here was nol the rounding of 125,000,000,000,004, but lhc
fact that this was followed by a subtraction of a nearly equal value. Further, note that
this is not a problem unique to the numerical computation of limits, but one that occurs
in numerical compulation, in general. ¢ oo ]

In the case of the functioh from example 7. 5 we can avmd the subtraction md hence,
the loss-of- mgmﬁcamc errov by rewriting the fumuon 4y fo]lows

: W4
Fo= S 2
(¥ 4 8P - 16) — &©
o 9
87 +16

- Ty
X3

where we have eliminated the subtraction. Using this new (and equivalent) expression for
the function, we can compule a table of function values reliably. Notice, too, that if we

redraw the graph in Figure 1.57a using the new cxpression (see Figure 1.58), we no longer

see the oscillation present in Figures .57 and 1.57b.
From the rewrilten expression, we easily obtain

RS E)
hm *;————Z y
X—00 X

which is consistent with Figure 1,58 and the corrected table of funciion values.
In example 7.6, we cxamine a loss-of-significance error that-occurs for v close

HAMPLE 7.{ Loss-of- Slgmficance lnvolvmg
a Trigonometric Function
1 —cosx?

Evalaate lim —————-.
=0 .\‘4
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Y : Sohstion  As usual, we look 4t a graph (sce Figuré'.z] 59} é}’ud some function values. -
03 Y t="cosx? : : o 1 = cosxt
/ -\' Sy N :'A“‘-.mj"'- ) Yo Cxd R
IS 0.1 0.495996" —0.t - 0.499996
/ 0ot | 0s : —0.01 0.5
/ 0.001 05 —0.001 0.5
/ \ 0.0001 0.0 —0.0001 0.0
} t e e B ¢ ‘ i {
" e 0.00001 | 00 0.00001 | 0.0

FIGURE 1.59 As in example 7.1, note that the function values seem (o be approaching 0.5, but then
| - cos.? suddenly take a jump down to 0.0: Once again, we are seeing a loss-of-significance
Y=o error. T this particular case, this oceurs because we are subtracting neurly equal values -
) {cos x? and 1), We can again avoid the error by eliminating the subtraction, Note that

7 f—cosx?  1-—cosx? |-+cosx’
sin*(x?) o X 1+ cosy?
X T T
41 + cosxl) | — cos ( 2)
+0.1 0.499996 T 371 +cosx?) e
+0.01 | 04999999946 ' . 2( _2)
10001 0.5 _ _4_33”_2_
40.0001 | 0.5 . x* (1 +cosy )
£0.00001 [ 05 : Since this last (cquivalent) expression has no subtraction indicated, we should be able to
use it to reliably generate values without the worry of Joss-of- significance ervor. Using
this to compute function vatues, we get the accompanying Lable.
Using the graph and the new table, we conjecture that
i | —cosx® 1
1 - T = o’ .
=6 x? 2 M I
We offer one final example where a loss-bl’-signiﬁ'cancc error occurs, even though no
subtraction is explicitly indicated. ' ' :
“i’ AMPL‘. 7, i A Loss- of Slgmficance Elror Invofvmg a Sum
' y Evaluate tim (ESE ) RS
- 'y x"fm .
~1x 100 6107 ~2x 10" | Solution litially, you might think that since there is no subtraction (explicitly)
) ' ' "7 indicated, there will be no loss-of-significance error. We first draw a graph (sec Figure
1.60) and compute a table of values. )
1 ) —
x .\-[(.vz + 9y .r]
5 — 100 -1.9998
-1 107 -1 ‘)99998
. —1x 10} =20
B ~1x 105 | —2.0
: <ot | -20
FIGURE |.60 : : o =l x ! 0.0
y =2l + 47 4y —1 % 108 0.0
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You should quickly notice the sudden jump in values in the table and the wild
oscillation visible in the graph. Although a subtraction is not explicitly indicated, there

. . . ‘ 1/2 .
is indeed a subtraction here, since we have v < 0 and (x* +4) * 5 0, We can again
remedy this with some algebraic manipulation, as follows. - :

X [(_r2 + 4)1/2 + x]

il

NI

B [(1 +4)—x ] _
e H7 o e
4x

o

We usc this last expression lo generate a graph in lhe same wmdow as. (hat used t(u

Figure 1.60 and to generate the accompanying table of values, In Figure 1,61, we can

see none of the wild oscillation observed in Figure 1 6(} dnd the graph appears to bea
_harizontal line.

y
r

—1 X108 —6x 107 —2x 107
—_—t X

- ’ v . ‘ . 4,;_- N
R I (L R
[ H;._,,,,,,.‘.,,,_.._z . ) ;100- —'1.9998
' 1% 10° | —1.999998
; —1x 10* | —1.99999998
b x 0 -1.9999999998
: —Ex W8 20
FlGURE‘.I.bl- TR | 20
y= [*(‘17;'4—)]7?*:?] '. 1 x 108 | =20

Fuzrther, the values displayed in the table no longer show the sudden j jump llldlCdllVC of a
loss-of-significance ervor. We can ntow confidently wmcuure that

]tm af(a? +4) F\]_u

- T SO S

" BEYOND FORMULAS

Inexamples 7.5-7.7, we demonstrated catculations that suffered frony catastrophic loss- -
ofl-significance errors. In each case, we showed how we could rewrite the expression
" to avoid this error. We have by no means exhibited & general procedure for recognizing
and repairing such errors. Rather, we hope that by seeing a few of these subtle errors,
and by seeing how to fix even a limited nuniber of them, you will become a more
skeptical and intelligent vser of technology. ‘ :
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It is probably clear that caution is important in using tech-
nology. Equally important is redundancy. This property is
sometimes thought to be a negative (wasteful, unnecessary),
but its positive role is one of the lessons of this section. By
redundancy, we mean investigating a problem using graphical,
numerical and symbolic tools. Why is it important {0 use mul-
tiple methods? Answer this from a practical perspective (think
of the problems in this section} and a theoretical perspective
(if you have leamed multiple techniqués, do you understand
the mathematics better?).

The drawback of caution atd redundancy is that they take extra
time, In computing limits, when should you stop and take extra
time to make sure an answer is correct and when is it safe to
go on to the next problem? Should you always look at a graph?
compute function values? do symbolic work? an £—§ proof?
Prioritizc the techniques in this chapter.

Sla+hy— fa)
h
Chapter2. Fora specnﬁc function and specific a, we could com-
pute a table of values of the fraction for smaller and smaller
values of-f1, Why should we be wary of loss-of-significance

errors? '

The limit llm will be very important in

Notice that we rationalized the nwmerator in example 7.7, The
old rule of rationalizing the denominator is another example
of rewriting an expression o try to minimize computational
errors. Before éomputers, square roots were very difficult to

compute. To see one reason why you might want the square -

root in the numerator, suppose that you can get only one dec-
imal ptace of accuracy, so lhm V3= 1.7. Compare £ to &
and then compare 2{1.7) to \/- Which of the 'tppr()‘(lm‘ltlon‘s
could you do in your head?

In exercises 1-12, (a) use graphics and numerics to conjecture
a value of the limit, (b) Find a computer or calculator geaph

shewing a loss-of-significance error. {¢) Rewrite the function to .

avoid the loss-of-significance ervor.

L,

3

5,

7.

Jim x (VAT -~ 2) 2 lim x(VATT+2)
tim J( AT AT A lim 52 (V¥TFB -7
Jim ¥ (VaZ4+4- \/Tlﬁ) 6. lim x (Va¥+8—x¥?)
e -l

i‘_‘}}, 1 —:25.\'3 o 10, E“}}, I —-::)s ¥t

11,

12.

- 1-68

lim _;'-4!3(\3/_\-'3 +i—vxT—1)
I—>00 .
lim .\-2f3(J’ 1 -*-4 -- J—‘ v —3)

[ da]

In exercises 13 and 14, cnmpme the Timits to show that 5111’1“
errors can have disasty ous effects,

13,

14,

{315

R ) +\4201

[im and - hm ———

HI_ X - : X1 x -1
x -2

ET: 12 and }Ij:l; 401

Compare’ f{x)=sinwy and g{x) =sin3.ldx for x=1

~ {radian), x = 10, x = 100 and x = 1000.

16.

For exercise [, foliow the calculation of the function for

x = 10% as it would proceed for a maching computing with

a 10-digit mantissa. dentify where the round-off error ogeurs,

In exercises 17 and 18, compare (he exact answer to one obtained
by a computer with a six-digif mantissa,

7.
18,

£ 10.

(L. 000003 - 1.000601) x 0y

(t 000006 — | oooom) x LY

If you have access to a CAS, test it oit the lmuts of exam-
ples 7.1, 7.6 and 7.7. Based an these results, do you think that .
your CAS does pre_u.se calculations or numerica estimates?.’

@®

EXPLORATORY EXERCISES

I. inthisexercise, we look atone aspect of the mathematical study

of chaos. First, iterate the function f{x) = x? —2 starting at
vy = 0.5, That is, compute v, =_f(0.5), then x = f{{x), then

Uy == f{xa)and so on. Altholigh the sequence of numbers stays

bounded, the numbers never repeat {except by thé accident of
round-off errors). An i lmpresswe property of chaotic functions
is the butterfly effect (more properly referred to as sensitive
dependence on initinl conditions): The butterfly effect applies
to the chiotic nature of weather and states that the amount of
air stirred by a butterfty flapping its wings in Brazil can create
or disperse a tornado in Texds a few days tater. Therefore, long-
range weather prediction s impossible. To illustrate the butter-
fly effect, iterate f{x) stuting at xp = 0.5 and xp = 0,51, How
many iterations does it take before the iterations are more than
0.1 apart? Try this again with g = 0.5 and xy = 0.501. Repeat
this exercise for the function g{xy= 1% - 1. Even though the
finctions are almos! identical, g{x) is not chaotic and behaves
very differently. This represents an imporjant idea in modern
medical research called-dynamical diseases: 1 small change in
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one of the constants in a function (e.g., the rate of an electrical
signal within the human heart) can produce a dramatic change
in the behavior of the system (e.g., the pumping of bload from
the ventricles).

Just as we are subject to round-off error in using calcutations
from a computer, so are we subject to errors in a coniputer-
generated graph. After al, the computer has to compute func-
tion valués before it can decide where to plot points. On
your computer or cilculator; graph y = sinx? {a disconnected
graph—or point plot—is preferable). You should see the os-
cillations you expect from the sine function, but with the os-
cillations getting faster as ¥ gets larger. Shift your graphing
window to the right several times. At some point, the plot will

2

(O WRITING EXERCISES |

The following list includes terms that are defined und theorems that
are stated in this chapter. For each term or theorem, { 1) give a precise
definition or statement, (2) state in general terms what it means ancl
(3) describe the 1ypes of problems with-which it is associated.

Secant ne Limit Infinite limit
One-sided limit Continuous Loss-of-significance
Removable Horizontal asymptote  error

discontinuity - Squeeze Theorem Slunt asymptote
Vertical asymptote  Length of line Intermediate Value
Method of bisections segment Theorem

Slope of curve

(O TRUE OR FALSE |

State whether each statement is true or false and briefly explain
why. If the statement s false, try to “fix it” by modifying the given
statemens to make a new statement that is true.

1, In catoulus, problems are often solved by first approximating
the selution and then improving the approximation.

2. It f(LD) = 2.],‘ F(1.01) = 2,01 and so on, then lim] flxy=2.
3. Il f(0)- g0 = (lim f((lmg()]

fim f(x) -
4, Ir 1I£‘—2 =

a—a g(x) 11m g(\)
5 Hf2y=1 :md f(4) =2, thsn there exists an x between 2 and
4 such that f(x)-=D. )
6. For any polynomial p{x), lim p(x) =00
E e el
7. If fl)= P_f_\_)) for polynomials p and g with g(a) = 0, then
qlx

S has a vertical asymptote at x = a.
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become very messy and almost unreadable. Dcpendifng on your
technology, you may see pattemns in the plot. Are these patterns
real or an ithusion? To explain what is going on, recall that a
computer graph is a finite set of pixels, with each pixel rep-
resenting one x and one y, Supposu the computertis plotting
points at =0, x= 0.1 =02 and sv on. The" -y-valnes
would then be xin 02, sin0:12, sin0.22 and so on, Investigate
what will happen between x = 15 and x = 16, Compute all fhe
points (15, sin 15%), (15.1, sin 15.12) and so on. If you were to
graph these points, what patteen would emerge? Toexplain this
pattern, argue that there is approximately halt a period of the
sine curve missing between each point plotted. Also, investi-
gate what happbns between v =31 and 'y =32

8. Small round-otf errors l}’pltdliy have only small eﬂee!s on a
calculation.

"9, lim f(x) = Lif and only if lim o/ f(x) = VI,
A R r—=a .

In exercises 1 and 2 numerically estimate the slnpe ul‘y = fexy
atx =aq. : :

1, flxy=x?— 21',-'{: =2

2, f{x)=sin2y,a =0

Inexeecises 3 and 4 unumerkcatly estimate the length of the curve
using @) # = 4 and (b} n == 8 line segments and evenly spaced
x-coordinaies. : ’

3 @) =siny,0sxs?

4 fx) =3 -3 0=x=2

In exercises 5-10, use numerical and graphical evidence to con-
jecture the value of the limit, ‘

2 . x L |

tan 'y )
5. lim—il}w;‘— 6. fim
=0 . X ' : vl nx?
2 : N
N LY
9, lim [ 1+ — 10, ‘tim x¥*
) Fog X -
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Notice that the speed calculation in mJs is the same calculation we would use for the slope

between the points (9.85, 100) and (19,79, 200). The connection between slope an(l spccd
{and other quantities of interest) is explored in this chapter.

(@) 2.1 TANGENT LINES AND VELOCITY

P
Point
iaf

FIGURE 2.1
Path of rock

" release

A traditional slingshot is essentially a rock on the end of a string, which you rotate arouind in
a circular motion and then relesse. When you release the string, in which direction will the

" rock travel? An overhead view of this is illustrated in Figure 2.1, Many people mistakenly

belicve that the rock will foltow a curved path, but Newton's first law of motion tells vs that
the path in the horizontal plane is straight. In fact, the rock foltows a path along the tangent
line to the circle at the point of release. Our aim in this section is to extend the notion of '
tangent line to more general curves, :

To make our ([lscusszon more concrete, suppose that we want to find the tangent line
lothecurve y = X 21 | atthe point {1, 2} (see Figure 2.2}, How could we define this? The
tangent line hugs the curve near the point of tangency. In other words, like the tangent line
to a circle, this tangent line has the same direction as the curve at the point of tangency. So,
if you were standing on the curve at the point of tangency, ook a small step and tricd to
stay on the curve, yon would step in the direction of the tangent line. Another way to think

" of this is to observe (hat, if we zoom in sufficiently far, the graph appears to approximale

that of & straight line. In Figure 2.3, we show the graph of y = x? + | zoomed in on the

- small rectangular box indicated in Figure 2.2. (Be awure that the “axes™ indicated in Fig-

ure 2.3 do not intersect at the origin. We provide them only as a guide as to the scale used
to produce the figure.) We now choose two points fTom the ¢urvi—for example, (1, 2) and
(3, 10)—and compute the slope of the line joining these two points. ‘iuch a line is cq!led a
secant Jine and we denote its slope by ..

Misec =

An equation of the secant line is then determined'by

y—2
=1
¥ ¥
Fy *
17+ / 2.2 Ve
-+ J/
214 e
LR / o /,/
+ Co204 i
l / . . /
A 1.9+ e :
_ T2 e .
Pt ——t f—t+—F+—+—» X u’
-4 -2 | 2 oI .
—44 S Qf-«—fﬁ— pmt ¥
- (.92 0,96 EO0 1.04 1.08
FIGURE 2.2 FIGURE 2.3
ye=xl41 y= _\‘2. +- 1
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FIGURE 2.4a
Secant line joining (1, 2) and

(3,10

FIGURE 2.4b

Secant line joining (1, 2) and (2, 3)

30 that
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y=d4@ - 1+2. -

As can be seen in Figure 2.4a, the secant line doesn’t look very much like a tangent
line.

Taking the second point a litde closér to the- pomt of l:mg,cm,y say (2 5), gives the
slope of the secant line as -

52
Mgee = 7T =..3

and an equation of the secant line as y = 3(x %-1) + 2. As ‘-‘scen in Figure 2.4b, thié looks

“much more like a tangent line, but it’s still not quite there. Choosing our second point

much closer to the point of tangency, say (105, 2.1025), should give us an even better
approximation (o the tangent line. In this case, we'have

_ 20052,
Mleee =05 — 7

and an equation of the secant kine is y = 2.05(x"— 1) - 2. As can be seen in Figure 2.4c,
the secant Hne looks very much like a tangent Hine, even when zoomed in quite.far, as in
Figure 2.4d. We continue his process by computing the slope of the secant line joining
(1, 2) and the unspecified point (1 + I, f(i + I)), for some value of h close to 0. The stope
of this secant line is

ORI

S +h) -2
Mgep = = -
T (-] Tk
(L+2h4+0H) -1 2h+4-0* y o
= - R TH TR I IRER S F
h h . I
h(2 + 1 o |
= M_l) =2 + h. . Toated Gl oo [EREEY
I .
¥ ¥
Fy 3 .
124 3t /.
81 /. e
-+ / /‘ . 2“ / £
-
T / . 7 .
AN i T .
\ “-:( 1__ X .
_:;_'_‘_ﬂ_.'h_'ﬁ?ﬂw* X ‘ - L
‘ / ' e
1 ue 0 14

FIGURE 2.4d
Close-up of secunt line

FIGURE 2.4c
Secant line joining (1, 2) and
(£.05, 2.1025)
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y= f {x)

e

X

FIGURE 2.5
Tangent line inlersecting a curve
at more than one point

>

FIGURE 2.7
Secant lines approachiny the
tangent line at the point P

‘Differentiation ' : 2-4

* Notice that as & 'lppmachex 0, the slope of the secant line app:oachcs 2, which we define

T o be the slope of the tangent hne

We should make one more observation before moving on to the generai casc of -+ '
tangent lines. Unlike the case for a circle, tangent lines may intersect a curve at more
than one point, as indicated in Figure 2.5. S

O The General Case

To find the slope of the tangent line to y = f(x) atx = g, first pick two points on the curve,
One point is the point of tangency, (u, f(«)). Call the x-coordinate of ihe second. point
x =g + h, for some small number i; the corresponding y-coordinate is then f{¢ + h). H
is natural to think of /# as beintg positive, as shown in Figure 2.6a, although A can also be
negative, as shown in Figure 2.6b.

\\ /’/ - " /

7

FIGURE 2.6a
Secant line (h > 0)

AN
o

a+h a

FIGURE 2.6b
_ Secant line (i < 0)

‘The slope of the secant line through the points (¢, f(a)) and ((r + h, fla+ h)) is

. given by

o = fla+ 1) — fla) .: fla+ " — fla)

(@+h)—a h

(L1

Notice that the expression in (1.1) (calted a difference quotient) gi\*cs the slope of the

. secant line for any second point we miglt choose (i.c., for any & (). Recall that in

order to obtain an improved approximation to the tangent line, we zoom in closer and
closer toward the point of tangency. This makes the two points closer together, which
in wm makes A closer to 0. Just how far shouid we zoom in? The farther, the bet-
ter; this means that we want /i to approach (. We illustrate this process in Figure 2.7,
where we have plotted a number of secant lines for i > 0. Notice that as the point
( approaches the point P (e, as i — 0), the sec’ant line approaches the langcni line
at P. o :

We define the slope of the tangent lme to be the limit ol the slopcs of lhc semm lines
in(L.1)as /i tends to G, whenever this limit exists.
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FIGURE 2.8
y = 12 + 1 and the tangent line
atv =1

§ TR

RAMPLE L1

the point (1; 2) has eqtmtlon
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DEFINITION .1
The slope 114, oi the langem lineto y = j(\) alx =uais given by ;

fla | )] —j(a)
Tho

Mg = }mu
i—

: providcd the limit exists.

The tangent line is then the line passing through the point (¢, . f (a)) with siope Mlsgn and

'so, the point-slope form of the cquation of the tangent line is

y= mm(-f —-a)+ f(a).

Finding the Equation of a Tangent Line
Find an equation of the tangent ling to y = v? e latx =10
Solution  We compute the slope using (1.2):

Hlan = gintll
—

h ‘
ORI =D
= lim —— -
h-+0 ) . ]i
14+2h+ 041 -2
= lim [ (ET PRI ST
fi— h
2h + h? R+ )
= hm = Rl ——————— facineail oo oot oanee]
h-rid h =0 R )
= ]im (2 +h)=

Notice that the point corresponding to v = | is (1 23 and the line with slope 2 thmugh

=20 —-1)42 or )’1:23-'.

Note how closely this corresponds to the secant Hines computed earlier. We show a graph
of the function and this tangent line in Figure 2.8, = . e et

. - T.angentwl’_i;é}orth_e Graphofa R.atior{ail VFVtrlﬁhrcrtion

Lo . 2
Find an equation ol the tangent line to y = — atx = 2,
. S X

Solution  From (1.2), we have
0 _ 5
240 - f(2 oman S .
Hlian = lim f( t 1) f( ) = lim 2+h o S fu? o s 1"'-"'"-.
k=0 h h—0 h BRI
[2-—(2+h)] _[t}—h]-
TN U SLLVAN R N R ) 2 T
h—=0 I h—0 h
—h —1 1

= t — - = 1‘ = —.
R (2 + )k 2 +h ra
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FIGURE 2.9

2 .
y = — and tangent line at (2, 1)
x ‘ S
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FIGURE 2.10a

X — ]
y= x+1
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FIGURE 2.10b
Tangent line

. The point corresponding to x = 2 is (2, 1),'since (2} = 1. An equation of the tangent

linc is then -

1 -
Cy=p- L

We show a graph of function and this tangent line in Figure 29. & ...

In cases where we cannot (or cannot easity) evaluate the-lmit for the slope of the
tangent line, we can approxim:ue the limit numerically. We _illustratc this in example 1.3.
! 3 Graphlcal and Numerical Approxmatton

of Tangent Lines

x— l
Graphically and numcnc.al]y appmxlmfite the slope of Lhe mngem lingto y == -

at
r+4r
r =0 .

Sokition A grapholy = - I-IS shown in Figure 2.10a. We are interested inthe .
]l’ - ' N

AT

tangent Jine at the point (0, —1). We sketch a tangent line in Figure 2.10b, where we
have zoomed in to provide better detail. To approximate the slope, we estimate the
coordinates of one point on the tangent line other than (0, - 1). Tn Figure 2,10b, it
appears that the tangent line passes through the point (1, 1). An estimate of the slope is

: — (-1 . ' , '
then Mg, & 1= = 2. To dpproximate the slope numerically, we choose several
points near {0, —1) and compute the slopes of the secant lines. For example, rounding
the y-values to four decinal places, we have '

Second Point ) mue .~ 7| Second -Po.r'nr Co e

(1,0) 2{—_%3 =1 (-0.5, -3 %?E%l =40 |
(0.1, —0.8182) %Lﬂ = 1818 | (—o.1, -75.2222) : ;&izf—:é“—”- —a
001, ~0.9802) ﬂ% ~198 | (-o00n, —'1_.'025,2) :iio"?)(":?zi*—(oil) —202

In both columns, as the second point gets closer-to (G, —1}, the- slo;}c of the secant
line gets cleeel to 2. A reasonable estimate of the slopc of the curve at the point (0, —l)
is then 2. O

O .Velocity

The slopes of tangent lines have many impb;mm apptications of which one of the most
important is in computing velocity. The term veloeity is celt'ml!y familiar to you, bul can

- you say precisely what it is? We often describe velocity as a quantity determining the speed

and direction of an object, but what exactly is speed? If your car did not have a speedomeler,
you might determine your speed using the familiar formula -

distance = rate x time. o (1.3}

Using (1.3), you can find the rate (speed) by simply dividing the distance by the time,
However, the rate in (1.3) refers to qverage speed over a period of time. We are interested
in the speed at a specific instant. The following story shoulkl indicate the difference. .
During traffic stops, police officers frequently’ ask drivers if they know how fast
they were going, An overzealous student might answer that during the past, say, 3 years,




“down a great deal in 2 minutes. We gel an improved apploumf\t;on by fweﬂgmg over

SECTION _2'.| «+  Tangent Lines and Yelogity 151

2 months, 7 days, 5 hours and 45 minutes, 1hcy ve duvm exactly 4% 259.7 m]les $0 that

their speed was

. ’1l. distance 45,259.7 miles '1 6118 m .1'1
rale —= e} =, T .
S time 271.911.75 ho_urs 0 0P

Of course, most police officers would not be impressed with this analysis, but, why is
it wrong? Certainly there’s nothing wrong with tormula (1.3) or the arithmetic. However,
it’s reasonable to argue that unless they were in their car during this entire 3-year pulod
the results are invalid.

Suppose that the driver substitutes the fol]o\vmg 1rgumcm instead: "T lefi home at
6:17 .M. and by the time you puiled me over at 6:43 P.M., T had drivén exactly 17 miles.
Therefore, my speed was ' ‘ '

- 17 miles 60 minutes

rite - —— - 39.2 mph,
26 minutes | hom P

well under the posted 45-mph speu] timit.”

While this is a much better estimate of the velocity Ih’ln the i 6 mph compuled previ-
ously, it’s still an average velocity using too long of a time period. _

More generally, suppose that the function f(/) gives the position at time 7 of an object
moving along a straight line. That is, f(/) gives the displacement {signed distance) froin a
fixed reference point, so that () < 0 means thal the object is located } £ (1)} away from the
reference point, but in the negative dircction. Then, for two times « and & (where @ < b),
f(b) — fla) gives the signed distance between positions f (a) and f(b). The average
velocity vy Is then given by

sigﬁcd distance - f(b) — f(&)

time b a

Vayp =

EXAMPLE | .-" Flndmg Average Velomty
"The position of a car after / minutes driving in a straight liﬁc_ is given by
SR ST DR
s(:):ir — = 0= 4
Approximate the velocity at time 7 = 2.

Solution  Averaging over the 2 minutes fromf = 2 (01 = 4, we get from {1.4) that

5(4) —s(2) 2666660667 —~ 1.333333333

Uu\‘# == 42 ~ R 2
22 .666666667 milé/minute
© 22 40.uiph,

Of course, a 2-minute- fong interval is rather long, g;vcn that cars can speed up and slow

_]ust one minute: R .
$3) - 5() 2.25 11333333333
Vog =TTy N T
= 0.9166666667 mile/minute
% 55 mph. '
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SEF B ~5(2)

=2

L s
L0 | 0.9166666667
0.1 0.9991 666667
0.0 0.9999916667
0.001 0,999999917
0.0001 | 1.0

0.00001 | 1.0

" A sequence of these average velocities is displayed in the accompanying table, for

- velocity is approaching 1 m;te/mmute (60 mph), as i = 0. We refer to this limiting .

While this latest estimate is certainly better than the first one, we can do better. As we
wake the time interval shorter and shorter, the average. veloeity should be getting closer
and closer to the velocity al the instant / = 2. [t stands to reason that, if we compute the
average velocity over lhe time interval [2, 2 4 4] and then let i = 0, the resulting -
average velocities should be geumg closcl and ¢loser to the velocaty at the instant

s(2 1) — s(2) - s(Z—f— ity — 5(2)

We have Very = @+m-2 h

i > 0, with similar results if we allow /r to be negative. It appears that the average

value as the instantaneous velocity. S e

'This leads us to make the following definition, -

IPEFINITHON 1.2
It f(s) represents the position of an object relative 1o some fixed location at time ¢
as it moves along a straight line, then the instantaneous velocity at time 1 = a-is
given by s : .

fla+ i_z)—f(a) - fim j(aJrh) fgiz_)

=1i
va) hF.[;IE) ((:+]1)ua b0 h.

asy

provided the limit exists,

T N

uﬁ* f‘sMS*i S IS Fmdmg Averagerah’d instantaneou_s \)eloclty

Suppose that the height of a falling object 1 seconds after being dropped from a height
of 64 feet is given by f{f) == 64 — 1617 feet. Find the average velocily between times
t = | and f = 2; the average velocity between times + = 1.5 and 1 = 2; the average
velogity between times ¢ = 1.9 and 1 = 2 and the instantancous velocity al ‘
time ¢ = 2.

Solution The average velocity between times ¢ = landf =2 is

@ F) 64165 — [61 - 1607}

g == —48 fi)s.
Vig 3 I U
The average velocity between times £ = 1.5 and £ = 2 is
2 1.5) . 64 — 16{2)" — [64 -- 16(1.5)
vuvg:f() £a.5) (2)" — [ { )l=—56fu's.
215 0.5
The average velocity between times £ = L9 and £ = 2 iy
2)— £(1.9) 64— 16(2)7 - [64 — 16(1.9%] .
e SR 64 16QP 646U ) gy

2-19 .01
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The instantaneous velocny is the llrmt of such avcmgc vclocuu:s From (i. 5),
we have

v(2) = lim _#gf(*? .{L) - j@

h—0 (24-h) -2
(64 — 16(2 -+ H)?] - [64 — 16(2)%]

- IP—IJ}J h
lim [64 — 16(4 4 4k + hD] - [64 - 16(2)*] S &
= ek f‘t . Shfupiv ot nad caned
—~64h — 16h% . —16h(h +4) .
= lim ————— = lim ———— B o fonanmen i el sl
=0 B h—0 h )

= giu})[—lﬁ(h + 4] = —64 Iifs.

Recall that velocity indicates both speed and direction. {n this problem, f{7} measures
the height above the ground. So, the negative velocity indicates that the object is
moving in the negative (or downward) direction. The speed of the object at the 2-second
mark is then 64 fi/s, (Speed is simply the ubsolute value of velocity.) ...

Observe that the formulas for instantancous velocity (1,5} and for the slope of a tangent
line (1.2) are identical. We want to make this connection as strong as possible, by illustrating
example 1.5 graphically. We graph the position function f(1) =64 — 16° for0 <+ < 2,
The average velocity between ¢ = 1 and ¢ = 2 corresponds to the slope of the secant line
between the points at 7 = | and t = 2. (See Figure 2,11a.) Similarly, the average velocity
between t = 1.5 and 1 = 2 gives the slope of the corresponding secant ling. (See Figure
2.11b.) Finally, the instantancous velocity- at tlmc 't =2 corresponds to 1hc slope of the
‘tangent line at 1 = 2. (See Figure 2.11c.) :

¥ ¥ ¥
F 3 3 - F 3
80+ 80 1 . - 80+
- ‘_\‘\ - AN - )
801 BN 60 L - 60 .,
40+ ‘\ , 40+ N . AT
204 \ 201 : \ ' 204
, - N, N
: t —» ot } } ¢ —— !
1 A 3 I N3 : : ! 2 3
—20 - ~204 ' v -204 o
—40+ 404 I —dot
5, \\ ) ’ \\.
~ 60 A -601 o -6+ <
FIGURE 2.11a FIGURE 2.1 b FIGURE 2.11¢
Secant line between ¢ = 1 and Secant line between f = 1.5 - - Tangentlineatt =2 -
t=2 and £ =2 ’ ’

Velocity is a rate (more precisely, the instantaneous rate of change of: position with

respect to time), We now generalize this notion of instaritaneons rate of change. Tn general,
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Slope = — 1™

N

2001, Finally, expression (c) gives the instantaneous rate of ¢hatige of the population at -

FIGURE 2.12
y =1l

Differentiation ' 2-10

the average rate of chunge of a function f(x) between y=ga and x = b(a ,ri b) is
given by :

SBy— fla)
b-a e

" The instantaneous rate of changeof f(x)atx =« isrgivcn by

fim f(a + M — f((r}

- >0 h

provided the limit exists. The units of the instantancous ratc of chatige are the unifs of f
divided by (or “per”) the units of x.

A by e i [ I S R P

}" AMPLE 1, 6 Interpreting Rates of Change

If the function f(t) gives the population of a city in miltions of people t years afl ter .
January 1, 2000, interpret cach of the following quantities, assuming that they

2 0
equal the given numbers, (a) M = (1.34, (b) f(2) f(H=031and -
24— f2 - '
©1im LEED SO g
fr—-0 h
e ) o — fla)
Golution  From the plcccdmg, T s the average rate of change of th

function f between ¢ and b. Expression (Ea) tedls us that the average rate of change of f
between @ == 0 and b = 2 ix 0.34, Stated in more commen language, the city’s
population grew at an average rate of 0.34 iillion people per yeur between 2000 and
2002. Similarly, expression (b) is the average rate ol change between ¢ = 1 and b =
That is, the c¢ity’s population grew at an average rate of 0.31 million people per year in

time ¢ = 2. As of January |, 2002, thc cily’s populauon was growing at a rate of 0.3
million people per year, & . e

Additional applications of the slope of a tangent liie are innumerable. These include the .
rate of a chemical reaction, the inflation rate in cconomics and learning growth rates in psy-
chology. Rates of change in nearly any discipline you can name can be thonght of as slopes
of tangent lines, We explore many of these applications as we progress through the tgkt.'

You hopefully noiiced that we tacked the phrasc “provided the limil exists” onto the
end of the definitions of the slope of a tangent ling, the instantaneous velocity and the
instantaneous rate of change, ‘This was important, since 1hesc defining limits do not a!ways
exist, as we see in example 1.7.

XKAMPLE 1.7 A Graph with No Tangent Line at a Point
Determine whether there is a tangent ling to y = || at x =-0.

Sofution We can look al this problem graphically, numerically and symbolically. The
graph is shown in Figure 2.12. Our graphical technique is 1o zeom in on the point of
tangency until the graph appears straight. However, no matter how far we zoom in on
(0, 0), the graph continues to look like Figure 2.12. (This is one reason why we left off
the scale on Figure 2,12,) From this evidence alone, we would conjecture that the
tangent line does not exist. Numerically, the slope of the tangent line is the limit of the
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stope of a secant line, as the second point approuches the point of tanigency. Observe
that the secant linc through (0, 0) and (1, 1) has slope 1, as does the secant line throtgh
{0, 0y and (0.1, 0.1), In fact, if 1 is any positive number, the slope of the secant line
through (0, 0) and (h, |h}) is 1. However, the secant ling through (0, 0y and (—1, 1} has
slope —1, as does the secant line through (0, 0) and (A, |#]) for any negative number A,
We thercfore conjecture thit the one-sided limits ar¢ different, so that the limit (and also
the tangent line) does not exist. To prove this conjecture, we take our cue from the -
numerical work and fook at one-sided limits: if 4 >0, then }h| = /1, so that

i JOEN SO a0 ﬁni h_,
im = —-=1,
bt o : h—>o+ h w0
“On the other hand, if i < 0, then || = —# (remember that il i < 0, =k >.0), so that
SO - £O) A0 =h
L = im ——— = i — = -1,
hes0- I =t N 0 D
Since the one-sided limits are different, we conclude that
. SO+R) - £(0) .
lim SO+ = 7O does not exist
h—0 ]1
and hence, the tangent line doss notexist. . . ..
() WRITING EXERCISES
1. What does the phrase “off on a1angent” mean? Relate the com- T exercises 1-4, sketeh in & plausible tangent line at the given
mon meaning of the phrase to the image of a tangent to a circle point. (Hinl: Mentally z00m in on the point and use lhc Zoomedd
(use the slingshot example, if that helps). In what way does the image of the t.mg,cut )
zoomed image of the tangent promote the opposite view of the Ly
relationship between a curve and its tangent? Y
2. In general, the instantaneous velocity of an object cannot be /
computed directly; the limit process is the only way tocompute -
velocity e an instant. Given this, how does a car's speedometer - )
compute velocity? (Hint: Look this up in a reference book or - ;T‘:\ — By Atx=g
on the Infernet.” An important aspect of the car's ability to do ‘ \ -
this seemingly difficult task is thas it performs analog calculit- TN /
tions, For example, the pitch of a fly’s buzz gives us an analog ) N
device for computing the speed of a fly's wings, since pitch is ‘
proportional to speed.) 2. ¥
3. Lookinthe news media TV, newspaper, Internet) and find ret- .- : T
erences to at least five different rares. We have defined a rate of . _ ,// :
change as the limit of the difference quotient of a function, For ~ ~ - »r atx=0
your five examples, state as precisely as possible what the orig- / ‘ :
inal functionis. Is the rate given quantitatively or qualitatively? T e o
If it is given quantitatively, is the rate given as a percentage ora s v
number? In calewlus, we wsually compute rates (quantitatively) — e
as numbers; is this in line with the standard usage? \ o ’
4. Sketch the graph of a function that is discontinuous at x=k R N z/ _
Expluin why there is no tangent line atx = 1, 1 : C
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In exercises 5 and 6, estimate the slope of the t'm;,ent line to the

curveal x = 1. H‘-@]n exercises 9-12, compute llw slope . of the secant line be-

fween {he points at (a) x = 1 and x = 2, My=2ady=3,
@y=15amdx =2 {d)x=2andx =25 (e)x = L.%and

5, ¥ - T ©x=2,()x = 2and x = 2.1, and (g).use parts (a)—(i_'} and other
b ’ . calewlations as needed to estimate the slope of the tangent line
VL. aty = 2. _ 7 :
9. fy=x -x - 10. fx) = V21
1. f(x) = cos .‘-2 12, j'(_\-j = tan{x/4)

b . 3 In exereises 13-16, use 1 CAS or graphing calculator,

! _ ‘ 13. On one graph, skelch the secant lines in. exercise 9, parts
013 (a)-(d) and the tangent fine in part (g).

14. On one graph. sketeh ‘the secant lines in exercise: 10,- parts
 (ayd) and the tangent line in pact (g). .

6 1; 15, Animate the secant lines in exercise 9, parts (), (¢) and (e),
: . _converging to the tangent line in part (g).
\ - . 16. Animate the secant lines in exercise Y, parts (b), (d) ar_:_d ),
e ¥ converging to the tangent tne in part (g).
_2,\ ' In exercises 17-24, find the equation of the tangent line to
; = f(x) at x = a. Graph y = f(x) and the tangent line to
T - \euf\' that you hive the correct equation.
17. flxy=x" - ,a:l ) _18 j(\)-—x ﬁ2a*0
0. flxy=x—3x,a=-2 W f=x"+xa =1
In exercises 7 and 8, list the points A, B, C and D in order of 21 f(_\-l) = i _!', a=1 22. f(v) :. - A o a =:0

increasing slope of the tangent line,

O N DM f = VAT A La=1

4 H‘% 1n exercises 25--30, use gr .1plm.;l and numerical Lvulencc to de-
termine whether the tangent line toy = f(v}exisisal x = a. il
kA / it does, estimate the slope of the tangent; if not, explain w h) not.
/ \ c 7P 25, f()=|v—1|ata=1 '
- > X : 4y .
\ / : 26, f(x) = ata = 1
R
2.7 ‘ )' “2x? ifx =0 :1 ’ 0
L fl) = alag =
FO=30 s MO
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28.

29,

30.

-2y ifx =1

flx) = 3 ifrwl ata =1
vP—1 ifx <0
sl = 4l ifx =0 ata=0
N T2 ifx <0 _
Jy= A -2 ifr >0 wa=0

Bln exercises 31 34, the function represents the position in feet of
an objeet at time ¢-seconds. Find the average velocity between

(@t =0and/ = 2, (b}t =
@ ¢t=199 and { =

land? = 2,(c)fr = L9and 1t = 2,
2, and {e) estimate the instantancous

velocity at f = 2,

3t
33.

32, f =3 +1
3, f(1) = 100sinft /4)

fiy = 162410
Fiy= i +8

1n exercises 35 and 36, use the position function f{f) meters to

find the velocity at thae f =

35,
36,
37

38.

3

b=l

40

a seconds,
JW =165 @a=10)a=2
fy=Vi+16,a=0(b)a=2

The table shows the freezing temperature of water in degrees
Celsius at various pressures. Estimate the slope of the tangent
line at p = | and interpret the result. Estimate the slope of the
tangent line at p = 3 and interpret the result.

pam)y [0 1 2 '3 4
°C 0| -7 —-20f —-16| -1
The table sliows the range of a soccer kick launched at 30°

above the horizontal at various initial speeds. Estimate the slope
of the tangent line at v = 5% and interpret the result.

Distance (yd) | 19 | 28 | 37 | 47 | 38
Speed (mph) | 30 | 40 | 50 | 60 | 70

The graph shows the elevation of a person on a hike up a moun-
tain as a function of time. When did the hiker reach the top?
When was the hiker going the fastest on the way up? When
was the hiker going the fastest on the way down? What do you
think vecurred at places where the graph is level?

Elgvation
\'\

e
) 4 hours

* Tine

The graph shows the amount of water in a city water tank as a
function of time., When was the tank the fulest? the emptiest?
When was the tank filling up at the fastest rate? When was the
tank emptying at the fastest rate? What time of day do you
think the level portion represents?

42

41.

43

44

45.

46,

47

48.

_velocity and —

@) 5 = 2103, () f(40) —
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Water level
P
R
A
e
;
;

» Time

4
t }
24 hours

Suppose i hot cupi of coltee is left in a room for 2 hours, Sketch
a reasonable graph of what the temperature would look like as

_a tunction of time. Then sketch a graph of what the rate of

change of the température would look like,

Sketch a graph representing the height of a bungee-jumper.
Sketch the graph of the person’s veloeity (use -+ for upward
for downward velocity).

Suppose that f(:). represents the bulance in dollars of a bank

account ¢ years after January 1, 2004. Interpret each of the fol-
- f(2 :

towing, ) L2 L2 _o1 634, ) 20— B =

@ J@)

h

4
S = 30,000.

25,036 and (¢) Him

T ho0
Suppose that f{m) represeats the vilue of a car that has been
driven ar thousand miles, Interpret each of the following,

JE0) — fo (3‘5) f(39) = 2040

and (c) llm ﬂmwz = ----ZGOO.

In using a slingshot, it is nnportam to geneme u large lmguhr
Ola - 1) —G(a)

velocity. Angular veloeity is defined by Ima

where 8(r) is the angle of rotation at time ¢. 1€ therang]e of
a stingshot is 0(r) == 0. M2, what is the angular velocity after
three rotatons?-[Hint: Whlch value of ! (seconds) curresponds
to three rotations?]

Find the ang,ul'lr velocity “of “the slingshot in- exercise
45 after two rotations. Explain why ‘the third rm'mon is
helpful. :

Sometimes an incorrect methiod accidentally prodisces a cor-
rect answer, For quadratic functions (but definitely not most
other functions), the average velocity between = randt = s
equals the average of the velocities at + =7 and + = . To
show shis, asseme that f(r} = at? + bt ¢ is the distance
function. Show that the average velocity between 1 =r and
1 = s equals (s -+ r) -+ b. Show that the velocity at t =7 is
2ar + band the velocity ut .= s is 2as + b Finally, show that
(Zm + b) + (2as + b)
'2 .

Find a cubic funclion [fry. f{t} = 4] and numbers r

a(s+r)+b

-and 5 such that the average velocity betweent = r and 1 = 5

is different from the average of.the \felocams akt=r fm(l
{=s. :
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49,

50,

51

52
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i)
Siow that lim Jlath f(a) = lim f(‘) j(a') . (Hint:
b0 h T
Leth=x—a.)

Use the second limit in exercise 49 to recompute the stope in
exercises 17 and 19. Which Limit do you prefer?

A car speeding dround a curve in the shape of y == x? (moving
from left to right) skids off at the point (2 s 4) If the car contin-
nes in a straight path, will it hit a tree located at the point (1, 1)?

For the car in exercise 5§, show graphically that there is only
one skid point on the curve y = x* such that the tangent line
passes through the point {1, 3).

—

EXPLORATORY EXERCISES

Many optical Hlusions are caused by our brain’s (unconscious)
use of the tangent line in determining the positions of objects.
Suppose you are in the descrt 100 feet from a palm tree. You
see a particular spot 10 feet up on the palm tree due to light
reflecting from that spot to your eyes. Normally, it is a goed
approximation to say that the light follows a straight line (lop
path in the figure). '

Two paths of light frem tree to persomn.

However, when there is a large temperature difference in the
air, light may follow nonlinear paths. If; as in the desert, the
air near the ground is much hotter than the air higher up, light
will bend as indicated by the bottom path in the figure. Our
brains always ‘interpret light coming in straight paths, so you
woutld think the spot onthe tree is at ¥ = 10 because of the top
path and also ut some other y because of the bottom path, IF
the botiom curve is y = 0.002x% — 0.24x 4 10, find an equa-
tion of the tangent ling at & = 100 und show that it crosses the
y-axisat y = - 10.That is, you would "see” the spotat y = 10
and also at y = — 10, a perfect reflection, '

e S T T TSRS
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- How do reflections normally occur in nature? From water! You
would perceive a tree and its reflection in a pool of water, Tlus

is the desert mlmgc'

. You can use i VCR to- estnu’tle sp{:ed Most VCRs play at

30 frames per second. So, with a frame- by-frame advance, you
can estimate time as the number of frames divided by 30. 1r

-you know the distance covered, you can compute the average -

velocity by dividing distance by time. Try this to estimate

. how fast yau can throw a ball, ruit 50 yards, hit 4 tennis ball

“or whatever speed you tind interesting. Soine of the possible

" inaccuracies are explored in_cxcrcise 3.

Whi it is the peak speul for u human being? It has bcen esti-
mated that Casl Lewis-eached a peak speed of 28 mph while
winning a gold medal in the 1992 Otympics. Suppose that we
have the following data for a sprinter.

Seconds -

‘Meters | Séconds Meters’

a0 3.2 : 62 6.26666
40 4.2 64 6.46666
50 516666 70 " 7.06666
56 5.76666 80 8.0

58 5.93333 9 9.0

60 | 61 oo 10.0

We want 1o estimate pmk spead. We could ‘-('Ut by computmg

distance . .100m .

——— = = lt) nv/s, but this is 1he average, speed
time - 10s

over the entire racé, not the peak speed. Ar;,ue that we want

-to compute average speeds only using adjacent measurements

{e.g., 40 and 50 meters, or S0 and 56 meters), Do this for all
11 adjacent puirs and find the largest specd (if you want to
convert to mph, divide by 0.447), We wﬂl then explore how
accurate this Sstimate might be.

Notice that all times are essentially multiples of /30,
since the data were obiained using the YCR technique in
exercise 2. Given this, why is it suspicions that all the dis-
tances are whole numbers? To get an idea of how much this

‘might affect your culculations, change seme of the distances.

For instance, it you change 60 {meters) to 59.8, how-much
do your average velocity calculations change? One possible
way to identify where mistakes have been made is to-look
at the pattern of average velucities: dogs it seem reasonable?
Would a sprinter speed up and stow down in such a pagtern?
In places where the patternseems suspicious, try adjusting
the distances and see if you can produce a moere realistic
pattern. Taking all this into account, try to quantify your
error analysis: what is-the highest (lowest} the peak speed
could be? '

AEPEITE




15 . - o T SECTION 22+~ TheDerivative 159

®) 4.2 THE DERIVATIVE

In section 2.1, we investigated two seemingly unrelated concepts: slopes of tangent lines
and velogity, both of which are expressed in terms of the same limit. This is an indication
of the power of mathematics, that otherwise unrelated notions are described by the same
mathematical expression, This particular limit turss out to be so useful that. we gwc it a
special name. :

DEFIMNITION 3.1 7
The derivative of the function f(x) at v = « is defined as
f@+h - o)

1

21

)= ]im

p| rovided the Hmit exists. It the fimit exists, we say that f is d:ffetentnble atx =a.

An alternative form of (2.1) is

f @)= llm —————f(b) fla

2.2
pm (2.2)

{See exercise 49 in section 2.1.)

! Fmding the Derwatlve ata Pomt

Compute the derivative of f(x) = Ity - laty =1,

“Holuiion From (2.1), we have

SO +R) -1

)= ln
h _ .
i Ba+mP+20+m—1]-Q+2--1)
T ilﬂ;rl]) . 7. h . .
O33N 24214
= lim - - g s Muk [EE RN |
A—D “h E A
1A + 907 + 303 :
= Hn —_— S laher celoianbien St ool
h—0 h
= f]ll‘l‘l(l[ FOh 4 3% =11, -
i —0 B S S R

Suppose that in example 2.1 we had also needed to find £'(2) and f7(3). Must we now
repeat 1he same long limit caleulation to find each of f'(2) and f (337 Instead, we compute
the derivative without specifying a value for x, leaving us \Vllh a function from whlch we
can calculate f'(a) forany e, simply by substituting a for x.

% f{!&i\fi *F 3"’ 2 ) Fmdmg the 5éf|;fative at an Unspecmed Point

Find the derivative of f(x) = 3x* 4 2x — 1 at in unspecificd value of x. Then, evaluate
the derivative at x = L, v = 2and x = 3.
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Selution  Replacing ¢ with xin the definition of the derivative (2.1), we have

flx+1) —-;fﬂ

I RN T
f(f‘)"‘};f.‘g

I ‘

1 B+ 2 +m—1] -G +20 =1
a hLH:] h ’ ) : .
_ ]iIﬁ Y 4 3 3 Y+ Qe 2 - 1 - 3_1"3 —2 Ll
T a0 . h j ) .

L 9P o 1300 420 o : R
= [im ’ o

h—0 I : ’

= }ine} Ox +9xh + 307+ 2)
=0y 10+ 042 =97 +2

Notice that in this case, we have derived anew fimction, f'(x) = 9x% -+ 2. Simply
substituting in for x, we get f'(1) = 9+ 2 = 11 (the same as 'we got in example 2.11),
) =9%+2=38and f'3) =N+ 2=83. w.. . S

Example 2.2 leads us to the following definition.

PEFINITION 1.2 _ _
The derivative of f(x) is the function f'(x} given by _ _
xRy~ flx . :
fm=pgﬁii%ﬁﬂ3, - (2.3)
. r—» ) i !

provided the limit exists. The process of computing a derivative is catled
differentiation. ‘ _
Further, f is differentiable on an interval 7 if it is differentiable at every point in 7.

In examples 2.3 and 2.4, observe that the name of the game is to write down the defining
limit and then to find sonte way of evaluating that Hmit {which initially has the indeterminate
~form P). ‘ : :

EXAMBLE 2.3 Finding the Derivative of a Simple Rational Function

1

If f(x)=—{(x #0), lind Fx.
X

Sefvtion  We have '

o
10 = fiy

[l )~ [)

h—-l h ‘ oA

[1 - (x +h)]
lHm ——‘(l+—h— S B e sl varerh,
=0 h

. —h
= [im —————
a0 hx(x +R)
= hm- -1
‘ _ Thmox(x ) 2 ‘
- oor PO = =78 8 e e

+
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FIGURE 2.13b
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EXAMPLE 2.!2 The Derivative of the Square Root Function
If f{x) = /T (forx > 0), find f’(\)

Solution We have -
!(1 f+m— fx)

Sy = lim S
VxR X
= lim —
h—0 h :
— lim \1-\'+TI—‘\[{ Vl‘l’h‘l’ﬁ Sl
k-0 h _ R VT NI B
— m (x+h)—x |
b TR e
h
{ sebe it
rHoh[./ ;,+f] .
== lin
k=0 /x + + f
RN RY
2% 2 ’

Notice that f'(x) is defined only fér x>0 B e R

The benefits of having a derivalive function go well beyond simplifying the computation
of a derivative at multiple points, As we’ll see, the derivalive t"unclion telis us a gle‘ll deal
about the original function.

Keep in mind that the value of a derivative at a point is the slope of the tangent line at
that point. In Figures 2,13a--2,13¢, we have graphed a function along with its tangent lines at
three different points. The slope of the tangent line in Figure 2.13a is negalive; the siope of
the tangent line in Figure 2,13¢ is positive and the slope of the tangent line in Figure 2.13b
is zero. These three tangent lines give us (hree points on the graph of the derivative function
(see Figure 2.13d), by estimating the value of f'(x) atthe three poinits. Thus, as x changes,
the slope of the tangent line changés and hence f(x) changes, : ‘

y
¥ +
A 4“
2._

¥ 1 t {— X

-2 -1 | 2
_2 4
—d . g
FIGURE 2.13c - FIGURE 2.13d

Pl = 0 ' _ y/= f"(x) {three points)
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FIGURE 2.14
= J ()

. the general shape right. As in Figures 2.13a-2.13d, pick a few important points-to
- analyze carefully. You should focus on any dlswnluuntu,s and any places whexc thu :
~graph of £ turns around. ‘

~approaches —2 from the left, observe that the angent lines get less sieep. Therefore,
_ f'(x) becomes less positive as x approaches —2 from the keft. Moving to the right from

- together, we have the possible graph of f7(x) shown in red in Figure 2.15,

FIGURE 2.15
= f{xyand y = f'(x)

Given the graph of f(x) in Figure 2.14, skclch a p]auSIble gmph of f (x)

-Joiutton Rather than worrying aboul exact values of the stope; we only \wsh o gcl

"The graph levels out al approximately v = -2 nud xXo= 2. At these points, the
derivative is 0. As we move from left to right, the graph rises for x < --2, drops for -
--2-< x < 2 and rises again for ¥ > 2. This means that f10) > Ofory < 2,

Sx) < 0for =2 < x < 2and Gnatly f'(x) > Oforx > 2We can say even more. Asx

x = -2, the graph gets steeper until about x = 0, then gets less steep until it levels out
at v = 2. Thus, f’(x) gets more negative until x = 0, then less negative until v = 2,
Finally, the graph gets steeper as we move o the right from x = 2. Putting this all

superimposed on the graphof (). ¥

The opposite guestion to Lhat asked in example 2.5 is even more interesting, That is,
given the graph of a derivative, what might the graph ol the original function fook like? We
explore this in example 2.6

2 ST AR S IR E B S

£ X!’\HPLE“ 2.6 Sketchlng the Graph off( )Gwen the Graph 6ff (x)
Given the gr'lph of f'(x} in Figure 2,16, sketch a plausible gtaph of f{\) '

Gotution  Again, do not worry about getting exact values of the function, but mlhu
only the general shape of the graph. Notice from the graph of y = f’(x) that f* () <0
for x < —2, so that on this interval; the slopes of the. tangent linies to y = f(x) are
negative and the function is decreasing. On the interval (2,1}, f(x) = 0, llldIC"lllI]g
that the tangent lines to the graph of y = f(x) have positive slope and the function is
increasing. Further, this says that the graph {urns around (i.c., goes {rom decreasing to

 increasing) at x = —2. We have drawn a graph exhibiting this behavior in Figure 2,17

204 ‘ o et |
RN \ﬂﬂ | //
10+ L 0t
A - | A J
\ T X 'K xw\:. A
. : 4
~tof : .%/fm"

/ ﬂ%}
—20+ ~20

- FIGURE 2.16 ) _ FIGURE 2,17
y = f'(x) o . y = f'{x)and a plausible graph
. S ofy = [(x)
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HISTORICAL -
NOTES &

Gottfrled Lelbnlz (16461716}
A Gorman mathematicianand
.phlfosopher who introduced
-much of the notation and
3terminology in calculys and who is

i credited (:ogether with Sir Isaac .,

: Newton) with |nventmg the .:

Jealeulus, Leibaiz was a prodagy' 5
who had already received his favy -
. 'Zdegree and published papers on

!ogu: and jurisprudence by age 20.
‘Atrue Renaissance man, Leibniz
made impertant contributions to
politics, philosophy, theology,
engineering, linguistics, geology,
architecture and physics, while
earnmg a repuitation as the

i greatest librarian of his time. ;L

: Mathemat:cally he darived many
I_fundamen lru]es for computmg L

ves ar d_hefped promote
. the deveiopment of calculus 27
. through his extensive {1
- communications, The mmpie and
logical notation he invented made
“caleulus accessible to a wide
audience and has only been
marginally improved upon In the
intervening 300 years. He ywrote,
"l symbols one observesan .
-.advantage in discovery which is .
greatest when they express the .
" exact fiatdre of a thing briefly .

..'__then_m_c!egd_the fabor of thought__ ’
“is wonderfully diminished.”. e

_superimposed on the graph of y = f’(x). Further, f () < O on the interval {1, 3), 50
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that the function decreases here. Finally, for v > 3, we havethat f'(x) > 0, so that

the function is increasing here, We show a grapli exhibiting all of this behavior in

Figure 2.17. We drew the graph of £ so that the small “valley” on the right side of the

y-axis was not as deep as the one on the lefi side of the y-axis for a reason. Look
carefully at the graph of f/(x) and notice that | !"'(t)l gds much larger on (-2, 1) than

on (1, 3). This says that the mngcm lmua and hcnu,, the gnph will be much sleeper on

the interval (—2, 1) thanon (1, 3). e e e

O Alternative Derivative Notations

We have denoted the derivative function by f”(x). There dre other commonly used notations,
cach wnth advantages and (imdd\f'uttagcs One of the coinventors of the calcuius, Gottfried

df
Leibniz, used the notation T (Leibniz notation) for the dcnvall\'e If we write y = j (x),
dx

the following are all alternatives for denoting the derivative:

f i
F =y = ‘j=wf<)

d . dx  dy. dx
The expression 7o is called a differential oper .ltm and tells you to ld!\c the derivative of
X

whatever expression follows,

In section 2.1, we observed that f(x) = |1| does not have a tangent lme at x=0
(i.e., it is not differentinble at x = 03, although it is continuous every where. Thus, there are
continuous functions that are not ditferentiable. You miglit have alreddy wondered whether
the reverse is true. That is, are there differentiable functions that are not conlmuousr’ The
answer (no} is provided by Theorem 2.1.

ifHF“(Z)RLM

If f(x) is differentiable at x = a, then f(\) is continuous at x = «.

PROOF
For f to be continuous at x = ¢, we need only show that lim f(x) = f{@). We consider.
l;m [Fx) — f(@)] = hm [f(l) J“(t“( 4(:}] Mty i by
= lim [f(‘) f((-l)] liiﬁ(-.r m'aj f.:'\'
x—d X —da Xt . H sap 13
= f{a)0) = 0, S 7 1 el g

where we have used the alternative definition ‘of deuvntwc (2.2) d;scusscd eqrhex By
Theorem 3.1 in section 1.3, it now iollows that

0= ]Im{f(\)* fla)= 11m flx)y - lim fler)
= hmj(t)— S,

whu,h gives us the rcsult

Note that Theorem 2.1 says that if a funcllon is not continuous at a point then it canmot
have a derivative at that poinl. It also turns out that functions are 1ot d:ftetcnmble at any
point where their graph has a slmrp corner, as is the case for f(x) = i1l at x = 0. (See
example 1.7.)
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FIGURE 2.18
A sharp corner
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FIGURE 2.19a .

A jump discontinuity.
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FIGURE 2.19b
A verticyl asymiptote

CHAPTER 2 =+ Differentiation

X

at a Point
4 ity <2, T - )
_ Show that f{x) = {21. :I: : 5 18 not differentiable at x = 2.

 Holutien  The graph (sec Figure 2.18) indicates a shé,fp cornerat ¥ = 2, 5o you

1 2-20

AMEPLE 2.7 Showing That a Function Is Not Differentiable

might expect that the derivative does not exist. To verify this, we investigate the
derivative by evaluating onc-sided limits. For i > 0, note that (2 4+ /1) > 2 and so,
S@2+ 1)y =22+ h). This gives us

S =[O 22+ =4

fim ————— tim -
h—0% I A= h
4424
= lm - Yoty
=0 h
2
—Hm TE =2 e
A0t

Likewise, ifh < 0,2+ 1) < 2'1\1_1(1 so, f(2+ 1) = 4. Thus, we have '_

lim f_(-?——————+ WA =

4’
AN}
h—0- I .

[N/

Since the one-sided limits do not agree (0 £ 2), f7(2) does not exist (i.c., f is not
differentiable at v = 2), # . __ .

Figures 2.19a--2.19d show a variety of functions for which f”(a) does not exist. Tn each
case, convince yourself that the derivative does not exist.

¥
Y
¥ -
A
! \ ‘ >
Y V4
"
J /
) ; ,y -
N/ e

FIGURE 2.19¢ -
A cusp

FIGURE 2.19d
A vertical tangent line

O ‘Numerical Differentiation

There are many times in applications when it is not possible or practical to compute
derivatives symbolically, This is frequently the case in applications where we have only
some data (i.c., a table of values) representing an otherwise unknown function. You will
need an understanding ol the limit definition to compute reasonable estimates of the

© derivative,
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ApprOXImatlng a  Derivative Numerlcally

RAAMPLE 2.8
Numerically estimate the derivative of f{x) = 2 at y=1.

Sotution We are not anxious to struggle through the limit definition for this function.
The definition tells us, however, that the derivative'at x = l is the limit of stopes of .
secant lines, We compute some of these below:

ol 'f(1+h)-f(1) R R B (R DL (U
P Tl SR Ry

0.1 4.7632 —0.1. - 3.9396

0.01 43715 _ —0.01 4.2892 -

0.004 4,3342 0,001 . | 43260

Notice that the stopes scem (o be converging to approximaicly 4.33as A approaclics 0.
Thus, we make the approximation f'{1) & 4.33. = ... e ]

Est[matlng Velocuy Numerlca!iy

Suppose that a Sp]til[()[ reaches the following distances in the given times. Eqmmte the
velocity of the sprinter at the 6-second mark. : -

) 50| 55 | 58 50 60 | 61 | 62 6.5 7.0
FO | 1237 | 14101 | 15148 | 15190 | 15840 | 161.92 | 16542 | 17585 | 193.]

Solution  The instantaneous velocity is the limit of the average velocity as the time
interval shrinks. We first compute the average velocities over lhc shortest mlervals .
given, from 5.9 to 6.0 and from 6.0 0 6.1

“Time |- Average Time .| Average

Interval *|  Velocity | Interval | Velocity
(5.9,6.0) 5.0 fi/s (_5.5, 6.0) 3478 ft/s
(6.0, 6.1} 3521 (5.8, 0.0) 34.9_5 ft/s

(59,60) | 35.001fus
60,6.1y | 3520¢us
60,62} | 35.101Us
6.0,6.5) | 34.901us

Since these ave the best individual estimates-availabsle from the data, we could just
split the difference and estimate a velocity of 35.1 f/s. However, there is useful
information in the rest of the data. Based on the accompanying table, we can conjecture
that the sprinter was reaching a peak speed at about the 6-second mark. Thus, we might
accept the higher estimate of 35.2 t/s, We shouid emphasize that there is not a single
correct answer to this question, since the data are incomplete (Le., we know the distance
only at fixed times, rather than over a continuum ol times). w0
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BEYOND FORMULAS

in SECtEOIlb 2. 3@ 8 we den\c rivmerous formulas for computmg deri nfdm'es Aq you
learn these formulas, keep in mind the reasons that we are interested in the derivative.
Careful studies of the slope of the tangent line to a curve and the velocity of a'moving.
object led us to the same limit, which we named the derivative. Ingeneral, the derivative
represents the rate of change of the ratio of the chauge of oRe.quaitity. to the change
in another quantity. The study of change in a quantifiable way led directly to modern -
science and engineering. If we were limited to studying phenomena with only constant
change, how much of the science that you have le'trned w ould sull emw

EXERCISES 2.7 (D
CRES 224G

) WRITING EXERCISES

1. The derivative is important because of its many difterent uses -
and interpretations. Describe four aspects of the derivative: -

graphical (think of tangent lines), symbolic (the derivative
function), numerical (approximationsy and applications (ve-
locity dnd others).

L

Mathemaficians often use the word “smooth” to describe func-
tions with certain {desirable) propertics. Graphically, haow
are differentiable functions smoother than functions that are
continuous but not differentiable, or functions that are not
continuous?

3. Briefly describe whaut the derivative tells you about the orig-
inal function. [n paticular, if the derivative is positive at a
point, what do you know about the trend of the function at
that point? What is different if the derivative is negative at the
point?

Show that the dertvative of f(x) = 3x ~5is f'{x) = 3. Ex-
plain in terms of slope why this is true,

ol

In exercises 1-4, compute f'{a} using the limits (2.1) and (2.2).
L fix)=3+la=1" 2, f(x)

 fo=ViIxr+lLia=1

=3+ la=1

3
4. f(-\')=t—+l,ﬂ:2

In exercises 5-12, compute the derivative function f'(x) using
2.1y or (2.2).

5. f(x)=3x2+1 6. fx)=22—2x+1

3
7. f(.\)-_—;—:[ - ..8. f(\)=ﬁ
9 flx)= \/ﬁjr—l ) 10, fixy=2x-+3

1L f(x) =x*+2v — _'1 12. Sxy=xt—2xF 41

1 exercises 13-18, match the graphs of the functions on the left
with the graphs of their devivatives on the vight.

13. ¥ (a) ¥
\ A / s
NV
RN VAN /[
Mo ‘): ;,(b)' . ;“.
i .
! - R
/ ———————— 3 Y

15, ¥
. 1\
i
R
/
o S R
16, 3 ).
—r—w\i%x
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22,

23

In exercises 19-22, use the given graph of f(x) to sketch a graph

of f'(x),

19, T
. . A
J ! '
|
i
\/l
20. Ty 25,
A
26
.///
27,
" 28,
‘ /f '
e 29,
21. ¥ 30,
F 3
31,
AN .
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v
F 3

e N

_ In exercises 23 and 24, vse the given graph of f7(x) ta skeich a
plausible graph of & continuous function f(x}, ’

-

. - .
Y - .
i

/

i
i
N

Graph f(x) = jvi + Jx — 2| and identify all x-values at which
JS(x) is not differentiable.

. Graph f{x) = ¢ ¥ and identify all x-values al which

f(x} is not ditferentiable.

Find all real numbers g such that £7(0) exists for f(x) = x”.

Prove that if f(x}- s differentiable at’ x =a, then
. flateh) = flay :

fim L2 A

Jim = = = cf'(a).

It flx) s diﬁ'e(eq!i:ible Al x=a#0, evaluate
i (\2) — fla?)

lim —

ran \ —

Prove that if f(x) is dnﬁmntmb]e at v =0, f(l) < 0 for all

xand f{0) = 0, then (0} =

The table shows the margin of error in degrees for tennis serves
hit at 100 mph with various amounts of topspin (in units of
revolutions per second). Estimate the slope of the derivative st
X = 60, and interpret it in terms of the benefit of extra spin.
(Data adapted from The Physics and !edma{ogy of Teinis by
Brody, Cross and Lmdsey)

40
2.4

100
4.6

20
1.3

60
3.1

30
39

Topspin (rps)
Margin of error
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The table shows the margin of error in degreus for tennis
serves hit at 120 mph from various heights. Estimate the
slope of the derivative at x = 8.5 and interpret it in terms
of hitting a serve from a higher point. (Data adapted from
The Physics and Tedmala‘g) af Tennis by Brody, Cross and
Lindsey.)

Height ({1} 75180 |85 |90 [95
Margin of eror | 0.3 | .58 | 0.80 | 1.04 | 132

In exercises 33 and 34, use the distances f(f) to estimate the
velocity at £ = 2,

33.

M,

35.

Jo.

{ - L7 18193201021 |22](23
Jay | 3113948158 68| 77|85

: |17 lts][19]20]21]22]23
fio) |46 [ s3|el 7078|8693

The Environmental Protection Agency uses the measurement
of ton-MPG to evaluate the power-train efficiency of vehicles.
The ton-MPG rating of a vehicle is given by the weight of the
vehicle {in tons} multiplied by a rating of the vehicle’s fuel ef-
ficiency in miles per gallon. Several years of data for new cars
are given in the table. Estimate the rate of change of ton-MPG
in {a) 1994 and (b} 2000. Do your estimates imply that cars are
becoming more or less efficient? Is the rate of change constant
or changing?

Year 1992 | 1994 | 1996 | 1998 | 2000
Ton-MPG | 44.9 | 45.7 | 46.5 | 47.3 | 47.7

The fuel efficicncies in miles per gallon of cars from 1992
to 2000 are shown in the following table, Estimate the rite
of change in MPG in (a) 1994 and (b) 2000. Do your esti-
mates imply that cars are becoming more or less fuel effi-
cient? Comparing your answers to exercise 35, what must be
happening (o the average weight of cars? If weight had re-
mained constant, what do you expect. vwould have happened
to \iPG" ' .

Year | 1992 | 1994 | 1996 { 1598 | 2000

MPG | 280 | 281 | 283 | 285 | 28.1

@ In exercises 37 and 38, use a CAS or graphing catculator

3.,

as.

Numerically estimate () for f(1) = x¥ and venfy your an-
swer using a CAS,

Numerically estimate f’() for f{x} = %9 and verify your
answer using a CAS

2-24

]n e\elcises 39 and 40, compute the- nghi -hand derivative

D, f(ﬂ)*-l f (") f SO0

and the left- h-md deumtue
f f (0)
ne
2x+1 ity <0
3v+1 ity =0

10+ iy

39, flx) = {

X2 ifx<0
40, f(-\) = {.‘_3 if 1 > 0

v}y ifx <0
Assume that f{x} :[i((i)) ;f : ; 0 .
x =0 and g and k arc differentiable at x = 0, prove that
D, f(0) == k' (0yand D £{0) = g'(0). Which sta{unenl is not

true it f has o jump discontinuity at x = 07

41 AF f is continuous

42

Explain why the deri ivative f'({0), exists n and only if the one-
-sided derivatives exist and are equal.

43, If f'{x) > O for all x; use the tangent line interpretation to ar-
gue that [ is an increasing function; that is, if ¢ < b, then

fla) < fib).

I f'(x} < 0 for all.w, use the tangent line interpretation to
argue that [ is a deerdasing function; that is, if-a < b, then
fla) > fiby o
'&—‘945. If f(x) = x¥*, show graphically and nunierically that fis
continwous at ¥ = 0 but f(0) docs not exist. .

44

H.\ <0

46, 1If f(x) = {2‘ iy >0 show_graphica}ly and nimerically

that_f s continuous at x = &'but’ f'(0) does not exist,

47. Give an example showing that the following is not-true for ali
functions f:if f(x) <., then f'(x) < |

d8. Determine whether the following is true for all functions
foif f(0y=0, f'(x) exists for all x and f(x) < x, then
fiy=l ' '

in exercises 49 and 50, give !he units for the derlvative func-
hon .

49, (a) f{1) reprusenls posmon measured in meters, 'tt time ¢
seconds. )

(b) f{x) represents the demand, in number of iteuis, of a

product when the price is x dollars. :

50. (a) cfr) represents thie amount of'a chemical present in grams,
it tl]‘llL ! ﬂl![lll[ﬁh
(by plx) represents lht. mass, in kg, of the first x meters Uf:t_
pipe. _ ‘ : 7
51. 'Let f(r) represent the trading value of 4 stock at time 1 days,
It f’(r) < 0, what does that mean about the stock? If you held
some shares of this stock, 5houid you sell what you have or
buy more?
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52,

53.

54,

55.

56.

Suppose that there ire two stocks with trading values f(#) and
g(r), where f{) > gy and O < f'(¢) < g'(£). Based on this
information, which stock should you buy? Briefly explain.

One model for the spread of a disease assames that at first
the disease spreads very slowly, gradually {he infection rate
increases to a maximum and then the infection rate decreases
back to zero, marking the end of the epidemic. If I{f) repre-
sents the number of people infected at time £, sketch a graph of
both () and F'(r), .1ssummg that those who get infected do not
reCover,

One model for urban population growth assumes that at first,
the population is growing very rapidly, then the growth rate
decreuses until the population starts décreusing It P{r) is
the population at time ¢, sl\euh a graph of both P(1) and
P'{1).

Use the graph 10 st the foil'owing in increasing order: f(1),
(1.5 ~ J(1)
f@ - gy, 22 Q).
0 5
y
4
\ 10—F /
gl .
\ i
. .
NS
2__
} + t + + —» X
=3

=2 =1 P 2.3

E)ferciécs 55 and 56

Use lhe graph to list the following in increasing order: f(9),

( -0.5 |
1O~ F(=D), i-“.iﬁf'—;(——),f'(ﬁ).

In exercises 57-60, the limit equals f'(«) For some function f(x)
and some consiont g, Determine f(x) and .

57,

58

59,

60.

61.

AR )
Iim — -

k=0 h
oJi+ -2
lim ——————
k-0 h )
1 1
hm 2Eh 2
h—0 - h
=1 =
limy ———-
h-sl) h
Sketch the graph of o function with the following prop-

eties: f(H =1, fF(1)=0, fFR) =06, f{0)=0, F/(1)==1

and ['(3) = 4.
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62. Sketch the graph of a function with the following properties:

63.

" 64

= =4, fi) =

-2, f =1, f (-2 =
and f'(2) = 1. :

=2, (=12

A phune company charges one doltar for the first 20 mintwtes of
acall, then 10 cents per-minute for the next 60 miimues and 8
cents per minule for each additional minute (or partial minute).
Let f(t) be the price in cents of 4 ¢-minute phone catl, ¢ > 0.
Detenmm. F/{r) us completely as possible.

The t‘\blu shows the pen,cm'\gb of English Prcmler L eague S0C-
cer players by birth month, where x = 0 represents November,
3 = 1 represents December and so on, (The data are adapted
from John Wesson’s The Science qf._S'm-mr.) 1f these data come
from o differentiable tunction f(x), estimate j7(1). Interpret
the derivative in terms of the effect of being a month older but
in the sume grade of school.

Month | O 1 12134
B9 7(7

Percent

3

o In Thcérpm 2.1,

EXPLORATORY EXERCISES

Compute the derivative function for x2, x* and x*. Based on
your results, identify the pattern and conjecture a general for-
mula for the derivative of 1" Test your conjecture on the func-
tions X =x"and Ijx = x"".

it is stated that a ditferéntiable’ furiction
is guaranteed to be continttous. The converse is not true;
continuous functions are not necessarily differentiable (see
example 2.7). ‘This fact is carried to an extrcmc'in Weier-
strass’ funetion, to be explored here. -First, graph the fanction
Ja(x) = cosx 4 % cos 3y +%’ cos9x -+ %cos 27x + -|]—6 cosBlx

in the graphing window 0<xy <27 and -2<y =<2,

Note that the graph appears to have several sharp comers,
where 1 derivd[i\e would not exisi Next, graph the function
Folx) = f35(0) + 5 Lcos 243x 4 — ; €05 729x. Note that there
are even more pl.ucs wlhere the bmph appeurs to have sharp
corners. Explore graphs of fip(x), f13{x) and so on, with more
terms added. Try to give graphical support to the fact that
the Weierstrass function fo{v) is ¢ontinuous for all x but is
not differentiable for any x. More graphical evidence comes
from the fractal nature of the Weierstrass function: compare
the graphs of fi{x) with 0 <=x <2m and -2 <y <2 and
folx) —cosx — Yeos3y withO<v < Zand -} <y < L
Explain why the graphs are identical. Then explain why this
indicates that no matter how much you zoom in on a graph of
the Weierstrass function, you will continue to see wiggles and
corners. That is, you cannot zoom in to find atangent line.

Suppuse there is a function F(x) such that F(}) =1 and
F) = fu, where 0 < jy < LI F'(1) > I, show graphically
that the equation f(x} = x has a solution g where 0 < ¢ < L.
(Hint: Graph y == x and a plausible F(x) and look for




179

b

CHAPTER 2+ Differentiation

intersections,) Sketch a graph where F'{1) < 1 and there are no
sohutions to the equation F(x} = x between 0 and 1 (although
x =1 is a solution). Solutions have a connection with the
probability of the extinction of animals or family names, Sup-
pose you and your descendants have children according to the
following probabilities: fy = 0.2-is the probability of having
no children, f; = 0.3 is the probability of raving exactly one
child, and f; = (1.5 is the probability of having two children.
Define F(x)= 0.2 4 0.3x -+ 0.5x7 and show that F/{1} > 1,
Find the solution of F(x) = x between x =0 and x = 1; this
number is tire probability that your “line” will go extinet some
time into the fiifure. Find nonzero values of fy, fi and f such
that the corresponding F(x) satisfies /(1) < I and hence the
probabitity of your line going extinet is f.

The symmietric difference quotient ofa tunction f centered at
h) — — 1
Jath = e ey = 41

and a = 1, illustrate the symmetric difference quotient as a
stope of a secant line for i = | and /i = 0.5. Based on your pic-
ture, conjecture the limit of the symmetric difference quotient

x == g has the form

2-26

_as A approaches 0. Then compute the limit and compare to the
derivative /(1) found in exdmple LEL Forh = 1 A =0.5and -
h = 0.1, compare the actual values of the symmetric ditference
j(a + k) -- f(a)

quotient and the usual difference quotient — ]
t

_In general; which difference quotient provides a better esti-

‘mate of the derivative? Next, compare the values of the dif-
ference quotients with /# == 0.5 and A == —0.5 to-the deriva-
tive f'(1). Explain j,rd[.)thd“y why one is. smulter and one'is
Jarger. Compare the average of these two ditference quotients
to the symmetric ditference quotient with & = 0.5. Use this
result to explain why the symmetric ditterence quotient niight
provide a better estimate of the derivative, Next, compute sev-
4 ity <2
v ita =2
centered at ¢ = 2. Recail that in example 2.7 we showed that

eral symmetric difference quotients of f{x) =

" the derivative” f'(2) does not exist. Given this, discuss one

major problem with using the symmetric ditference quotient
to approximate derivatives. Finally, show that if f* (@) exists,

fla-+h)— f(a - 1) — Fla).

-then lim

h—=0 . 2h

C(J) 2.2 COMPUTATION OF DERIVATIVES: THE POWER RULE

FIGURE 2.20
A horizontal ling

. You have now computed numerous derivatives using thie limit definition. In fact, you may

have computed enough that you have started taking some shoricuts. In exploratory exercise 1
in section 2.2, we asked you to compile a list of dcuthlvcs -of basic funcuons 'md 1o

* generalize, We comtinue (hat process in this su:uon :

' O The Power Rule

We first revisit the limit definition of derivative to. c0mpute two very simple derivitives.
(3.1

For any constant c,

- Notice that (3.1) says that for any constant c, thehorizontal line y = ¢ has a tangent
line with zero slope. That is, the tangent line to a horizontal fine is the same hor tzontal line

. (see Figure 2.20).

Let f{x) = ¢, for all x. From thc definition in eqmuon (2.3), we hd\’t’:

d e -f(x—-h)—f_(__r_)
ax f )= f,‘i‘b 7

= lim 2= = Jim 0= 0.

h—0- R fi—




