Translations of Linear Functions

- 1. a. Graph y = 2x. Plot at least 5 points on the line.
 - b. Translate the graph 4 units to the right by moving each point 4 units to the right.
 - Write the equation of the translated line in slope-intercept form.

- e. What are the coordinates of the point to which the point (0, 0) is translated?
- f. Where does the amount of the translation appear in the factored form of the equation from part (d)?
- 2. a. Graph y = 2x. Plot at least 5 points on the line.
 - b. Translate the graph 4 units to the left by moving each point 4 units to the left.
 - c. Write the equation for the translated graph in slope-intercept form.
 - d. Factor out the common factor in the translated equation.

- e. What are the coordinates of the point to which the point (0, 0) is translated?
- f. Where does the amount of the translation appear in the factored form of the equation from part (d)?

- 3. Examine the equations in part (d) of questions 1 and 2.
 - a. How do the equations differ?
 - b. How does this difference indicate the direction of the horizontal translation?
 - c. Explain why y = 2(x + 4) and y = 2(x (-4)) represent the same line.
 - d. What is the significance of the common factor?
- 4. a. By how much does y = 3(x 2) translate the line y = 3x horizontally?
 - b. In which direction, left or right, is y = 3x translated?
 - c. Graph y = 3(x 2) using a horizontal translation.
 - d. What is the x-coordinate of the point on the line y = 3(x-2) when the y-coordinate is 0?

- 5. a. By how much does y = 4(x + 2) translate the line y = 4x horizontally?
 - b. In which horizontal direction is y = 4x translated?
 - c. Graph y = 4(x + 2) using a horizontal translation.
 - d. What is the x-coordinate of the point on the line y = 4(x + 2) with a y-coordinate of 0?

- 6. a. Graph y = 10(x 3) using a horizontal translation.
 - b. Use your graph to complete the missing values of the coordinates on the line:

- 7. a. Graph $y = \frac{1}{2}x$.
 - b. Graph $y = \frac{1}{2}(x+3)$ using a horizontal translation. What is the x-coordinate of the point on this line with a y-coordinate of 0?
 - c. Graph $y = \frac{1}{2}(x-2)$. What is the x-coordinate of the point on this line with a y-coordinate of 0?

- d. Plot the point (5, 0) and draw a line with a slope of $\frac{1}{2}$ through the point. The equation of this line will be $y = \frac{1}{2}(x-5)$. Explain how this is a horizontal translation of $y = \frac{1}{2}x$.
- 8. a. Graph y = -3(x 4) using a horizontal translation. Plot at least 5 points.
 - b. Translate the graph in part (a) up 5 units.
 - c. What is the y-coordinate of the point on the translated line when the x-coordinate is 4?
 - d. The equation of the line can be written as y = -3(x-4) + 5Show that if x = 4 then y = 5.

- 9. a. Graph $y = \frac{1}{4}x$.
 - b. Translate the line in part (a) to the right 2 units and up 3 units.
 - c. Write the equation for the translated line in part (b) in the form, y = m(x h) + k, where h is the amount that the graph of $y = \frac{1}{4}x$ is translated to the right and k is the amount that the line is translated up.

- 10. a. Plot the point (-1, 3) and graph a line through the point with a slope of 2.
 - b. Explain how the line transforms y = 2x.
 - c. The point (0, 0) on y = 2x is translated to what point on the line y = 2(x (-1)) + 3?

- 11. Write an equation in the form y = m(x h) + k for the line that translates the line y = 4x.
 - a. 2 units to the right and up 1 unit.
 - b. 2 units to the left and down 1 unit.
- 12. Using translations, write the equation of the line in the form y = m(x h) + k that has a slope of 4 and: a. passes through the point (2, 1).
 - b. passes through the point (-2, -1).

- 13. a. The form for the equation of a line y = m(x h) + k is called the point-slope form. Justify this name.
 - b. The equation of a line written in the form y = mx + b is called the slope-intercept form of a line because both the slope and the y-intercept are visible in the equation. Show that the slope-intercept form for a line is the same as the point-slope form for a line with a slope of m that passes through the point (0, b).
- 14. Without graphing the following lines, list the slope of the line and name a point on the line.

a.
$$y = 3(x-2) + 4$$

b.
$$y = \frac{1}{2}(x - (-3)) + 5$$

c.
$$y = 2(x+1)+6$$

- 15. a. Graph y = 2(x+8) 3.
 - b. Graph y = 2x + 13.
 - c. Explain why graphing this line on the provided grid is easier when the equation is given in point-slope form than in slope-intercept form.

16. Describe two ways in which the equation, y = m(x - h) + k where h > 0, can be graphed without converting it to slope-intercept form.